Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Letter | Open | Published:

Changes to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi earthquake

Abstract

We carried out magnetic mineral analyses of samples from the shallowest major fault zone within the Chelungpu fault system, which is the zone that previous researchers believe slipped during the 1999 Taiwan Chi-Chi earthquake. Our aim was to gain an understanding of the changes to magnetic minerals during the earthquake. Magnetic hysteresis and low-temperature thermal demagnetization measurements showed that high magnetic susceptibilities in the black gouge zone within the major fault zone could be attributed not to fining of ferrimagnetic minerals but, rather, to their abundance. Thermomagnetic analyses indicated that the strata in and around the fault zone originally contained thermally unstable iron-bearing paramagnetic minerals, such as pyrite, siderite, and chlorite. We therefore concluded that frictional heating (>400°C) occurred in the black gouge zone in the major fault zone during the slip of the Chi-Chi earthquake and that the resultant high temperature induced thermal decomposition of paramagnetic minerals to form magnetite, resulting in the observed high magnetic susceptibilities.

References

  1. Hirono, T., M. Ikehara, K. Otsuki, T. Mishima, M. Sakaguchi, W. Soh, M. Omori, W. Lin, E. Yeh, W. Tanikawa, and C. Wang, Evidence of frictional melting within disk-shaped black materials discovered from the Taiwan Chelungpu fault system, Geophys. Res. Lett., 33, L19311, doi:10.1029/2006GL027329, 2006a.

  2. Hirono, T., W. Lin, E. Yeh, W. Soh, Y. Hashimoto, H. Sone, O. Matsubayashi, K. Aoike, H. Ito, M. Kinoshita, M. Murayama, S. Song, K. Ma, J. Hung, C. Wang, and Y. Tsai, High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: Nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP, Geophys. Res. Lett., 33, L15303, doi:10.1029/2006GL026133, 2006b.

  3. Hirono, T., E. Yeh, W. Lin, H. Sone, T. Mishima, W. Soh, Y. Hashimoto, O. Matsubayashi, K. Aoike, H. Ito, M. Kinoshita, M. Murayama, S. Song, K. Ma, J. Hung, C. Wang, Y. Tsai, T. Kondo, M. Nishimura, S. Moriya, T. Tanaka, T. Fujiki, L. Maeda, H. Muraki, T. Kuramoto, K. Sugiyama, and T. Sugawara, Nondestructive continuous physical property measurements of core samples recovered from Hole B, Taiwan Chelungpu-fault Drilling Project, J. Geophys. Res., 112, B07404, doi:10.1029/2006JB004738, 2007.

  4. Hirono, T., M. Sakaguchi, K. Otsuki, H. Sone, K. Fujimoto, T. Mishima, W. Lin, W. Tanikawa, M. Tanimizu, W. Soh, E. Yeh, and S. Song, Characterization of slip zone associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and microstructural observations of the Taiwan Chelungpu fault, Tectonophysics, 449, 63–84, 2008.

  5. Hunt, C. P. and S. K. Banerjee, Thermal demagnetization of lowtemperature SIRM: a new method for magnetic granulometry (abstract), EOS Trans. AGU, 73, 138, 1992.

  6. Hunt, C. P., S. K. Banerjee, J. M. Han, P. A. Solheid, E. Oches, W. Sun, and T. S. Liu, Rock-magnetic proxies of climate change in the loesspalaeosol sequences of the western Loess Plateau of China, Geophys. J. Int., 123, 232–244, 1995.

  7. Ikehara, M., T. Hirono, O. Tadai, M. Sakaguchi, H. Kikuta, T. Fukuchi, T. Mishima, N. Nakamura, K. Aoike, K. Fujimoto, Y. Hashimoto, T. Ishikawa, H. Ito, M. Kinoshita, W. Lin, K. Masuda, T. Matsubara, O. Matsubayashi, K. Mizoguchi, M. Murayama, K. Otsuki, H. Sone, M. Takahashi, W. Tanikawa, M. Tanimizu, W. Soh, and S. Song, Low total and inorganic carbon contents within the Chelungpu fault, Geochem. J., 41, 391–396, 2007.

  8. Kano, Y., J. Mori, R. Fujio, H. Ito, T. Yanagidani, S. Nakao, and K. Ma, Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett., 33, L14306, doi:10.1029/2006GL026733, 2006.

  9. Lachenbruch, A. H., Frictional heating, fluid pressure, and the resistance to fault motion, J. Geophys. Res., 85, 6097–6122, 1980.

  10. Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, and J. Mori, The Chi-Chi Taiwan earthquake: large surface displacements on inland thrust fault, EOS, 80, 605–611, 1999.

  11. Ma, K. F., E. E. Brodsky, J. Mori, T. A. Song, and H. Kanamori, Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw7.6), Geophys. Res. Lett., 30, 1244, doi:10.1029/2002GL015380, 2003.

  12. Ma, K. F., H. Tanaka, S. Song, C. Wang, J. Hung, Y. Song, E. Yeh, W. Soh, H. Sone, L. Kuo, and H. Wu, Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, 473–476, 2006.

  13. Mishima, T., T. Hirono, W. Soh, M. Ikehara, W. Lin, W. Tanikawa, E. Yeh, S. Song, and C. Wang, Thermal history estimation of the Taiwan Chelungpu Fault using rock-magnetic methods, Geophys. Res. Lett., 33, L23311, doi:10.1029/2006GL028088, 2006.

  14. Ö zdemir, Ö. and D. J. Dunlop, Chemical remanent magnetization during γFeOOH phase transformations, J. Geophys. Res., 98, 4191–4198, 1993.

  15. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, 1993.

  16. Pan, Y. X., R. X. Zhu, S. K. Banerjee, J. Gill, and Q. Williams, Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation, J. Geophys. Res., 105, 783–794, 2000.

  17. Shin, T. and T. Teng, An overview of the 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seismol. Soc. Am., 91, 895–913, 2001.

  18. Sibson, R. H., Interaction between temperature and pore-fluid pressure during earthquake faulting—A mechanism for partial or total stress relief, Nature, 243, 66–68, 1973.

  19. Snowball, I. and M. Torii, Incidence and significance of magnetic iron sulphides in Quaternary sediments and soils, in Quaternary Climates, Environments and Magnetism, edited by B. A. Maher and R. Thompson, pp. 199–230, Cambridge University Press, Cambridge, 1999.

  20. Tanikawa, W., T. Mishima, T. Hirono, W. Soh, and S. Song, High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan, Earth Planet. Sci. Lett., 272, 372–381, 2008.

  21. Warne, S. St. J. and D. H. French, The decomposition of anhydrous carbonate minerals in coal and oil shale ashes produced at temperatures of 400 and 575 °C, Thermochimica Acta, 75, 139–149, 1984.

  22. Wu, H., K. Ma, M. Zoback, N. Boness, H. Ito, J. Hung, and S. Hickman, Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs, Geophys. Res. Lett., 34, L01303, doi:10.1029/2006GL028050, 2007.

Download references

Author information

Correspondence to Tetsuro Hirono.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Frictional heating
  • 1999 Taiwan Chi-Chi earthquake
  • Chelungpu fault
  • ferrimagnetic mineral