Skip to main content

Advertisement

Improved geoid model determination for Japan from GRACE and a regional gravity field model

Abstract

A highly improved gravimetric geoid model for Japan, JGEOID2008, is developed on a 1×1.5 arc-minute grid by combining a GRACE (the Gravity Recovery And Climate Experiment)-based global geopotential model, GGM02C, surface (land and ship-borne) gravity measurements, and an altimetry-derived marine gravity model, KMS2002. In the combination, a semidiscrete two-dimensional wavelet analysis/reconstruction method is employed, selecting the spatial wavelength signals of the highest quality out of the respective data sets. Intercomparison with GPS/leveling geoid undulations shows substantial improvement of JGEOID2008 over the previous model, JGEOID2004, and reveals that the systematic errors at long wavelengths contained in JGEOID2004 have been effectively removed. Deviations of JGEOID2008 from the mean sea surface height at tidal stations on isolated islands were comparable to the differences in the sea surface dynamic heights (SSDH) in the Japan Sea, the Nansei Islands and the Izu Island chain from that in Tokyo Bay. The deviations show good agreement with SSDH features estimated from oceanographic observation, indicating that JGEOID2008 has an accuracy within 10 cm. The geoid model is strongly expected to serve as a reference in ocean dynamics studies.

References

  1. Andersen, O. B., P. Knudsen, and R. Trimmer, Improved high resolution altimetric gravity field mapping (KMS2002 Global Marine Gravity Field), in A Window on the Future of Geodesy: Proceedings of the IUGG 23rd General Assembly, Sapporo, Japan, 2003, IAG Symp., edited by F. Sanso, 128, 326–331, Springer, New York, 2005.

  2. Cartwright, D. E. and R. D. Ray, Energetics of global ocean tides from Geosat altimetry, J. Geophys. Res., 96, 16897–16912, 1991.

  3. Ekman, M., Impacts on geodynamic phenomena on systems for height and gravity, Bull. Geod., 63, 281–296, 1989.

  4. Förste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. König, H. Neumayer, R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, and S. Esselborn, The GeoForschungsZentrum Potsdam/ Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, J. Geod., 82, doi:10.1007/s00190-007-0183-8, 2007.

  5. Haagmans, R., E. de Min, and M. van Gelderen, Fast evaluation of convolution integrals on the sphere using 1D FFT and a comparison with existing methods of Stokes’ integral, Manuscr. Geod., 18, 227–241, 1993.

  6. Kuragano, T. and A. Shibata, Sea surface dynamic height of the Pacific Ocean derived from TOPEX/POSEIDON altimeter data: calculation method and accuracy, J. Oceanogr., 53, 585–599, 1997.

  7. Kuroishi, Y., Precise gravimetric determination of geoid in the vicinity of Japan, Bull. Geogr. Surv. Inst., 41, 1–93, 1995.

  8. Kuroishi, Y., An improved gravimetric geoid model for Japan, JGEOID98 and relationships to marine gravity data, J. Geod., 74, 745–755, 2001a.

  9. Kuroishi, Y., A new geoid model for Japan, JGEOID2000, in Gravity, Geoid, and Geodynamics 2000, IAG Symp., edited by M. G. Sideris, 123, 329–333, Springer, 2001b.

  10. Kuroishi, Y. and W. Keller, Wavelet approach to improvement of gravity field-geoid modeling for Japan, J. Geophys. Res., 110, B03402, doi:10.1029/2004JB003371, 2005.

  11. Kuroishi, Y., H. Ando, and Y. Fukuda, A new hybrid geoid model for Japan, GSIGEO2000, J. Geod., 76, 428–436, doi:10.100/s00190-002- 0266-5, 2002.

  12. Lemoine, F. G., D. E. Smith, L. Kunz, R. Smith, E. C. Pavlis, N. K. Pavlis, S. M. Klosko, D. S. Chinn, M. H. Torrence, R. G. Williamson, C. M. Cox, K. E. Rachlin, Y. M. Wang, S. C. Kenyon, R. Salman, R. Trimmer, R. H. Rapp, and R. S. Nerem, The development of the NASA GSFC and DMA joint geopotential model, in Gravity, Geoid and Marine Geodesy, IAG Symp., 117, edited by J. Segawa et al., 461–469, Springer, 1997.

  13. McCarthy, D. D., IERS Conventions (2003), IERS Technical Note, 32, 2003.

  14. Moritz, H., Geodetic Reference System 1980, Bull. Geod., 54, 395–405, 1980.

  15. Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor, An Earth gravitational model to degree 2160: EGM2008, the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008

  16. Smith, D. A. and D. G. Milbert, The GEOID96 high resolution geoid model for the United States, J. Geod., 73, 219–236, 1999.

  17. Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, GRACE measurements of mass variability in the Earth system, Science, 305, 503–505, 2004.

  18. Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, and F. Wang, GGM02C—an improved Earth gravity field model from GRACE, J. Geod., 79, doi:10.1007/s00190-005-0480-z, 2005.

  19. Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, Time-variable gravity from GRACE: first results, Geophys. Res. Lett., 31, L11501, 2004.

  20. Wessel, P. and W. H. F. Smith, Free software helps map and display data, EOS Trans., AGU, 72, 441, 445–446, 1991.

Download references

Author information

Correspondence to Yuki Kuroishi.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Local geoid
  • gravity
  • GRACE
  • combination
  • wavelet
  • sea surface dynamic height