Skip to main content

Relations between the thermal properties and porosity of sediments in the eastern flank of the Juan de Fuca Ridge

Abstract

The empirical relations of the thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) to the porosity and mineral composition of clay and sandy sediments recovered in the eastern flank of the Juan de Fuca Ridge are examined using the observed thermal properties, index properties, and mineral composition of the sediments. Observed thermal conductivity-porosity relations are explained using the geometric mean model. The observed relations of heat capacity and specific heat, respectively, to porosity are given by the arithmetic mean formula. A new model for the sediment thermal diffusivity-porosity relation is proposed based on models of thermal conductivity and heat capacity. This model, expressed by the geometric mean model with a correction function for the porosity and heat capacities of grain sediment and pore-filling fluid, explains the observed thermal diffusivity-porosity relations. These thermal property models are applicable to thermal properties of other sediment lithology types and are useful as standard models for estimating the thermal properties of marine sediment.

References

  • Blackwell, J. H., A transient-flow method for determination of thermal constants of insulating material in bulk, J. Appl. Phys., 25, 137–144, 1954.

    Article  Google Scholar 

  • Blum, P., Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores, ODP Tech. Note, 26, doi:10.2973/odp.tn.26.1997, 1997.

  • Brigaud, F. and G. Vasseur, Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks, Geophys. J., 98, 525–542, 1989.

    Article  Google Scholar 

  • Drury, M. J., Thermal diffusivity of some crystalline rocks, Geothermics, 16, 105–115, 1987.

    Article  Google Scholar 

  • Drury, M. J. and A. M. Jessop, The estimation of rock thermal conductivity from mineral content; assessment of techniques, Zentralbl. Geol. Palaeontol., 1, 35–48, 1983.

    Google Scholar 

  • Drury, M. J., V. S. Allen, and A. M. Jessop, The measurement of thermal diffusivity of rock cores, Tectonophysics, 103, 321–333, 1984.

    Article  Google Scholar 

  • Expedition 301 Scientists, Site U1301, in A. T. Fisher, T. Urabe and A. Klaus, and the Expedition 301 Scientists, Proc. IODP, 301, College Station, TX (Integrated Ocean Drilling Program Management International, Inc.), doi:10.2204/iodp.proc.301.106.2005, 2005.

  • Fisher, A. T., T. Urabe, A. Klaus, and the Expedition 301 Scientists, Proc. IODP, 301, College Station, TX (Integrated Ocean Drilling Program Management International, Inc.), doi:10.2204/iodp.proc.301.2005, 2005.

    Chapter  Google Scholar 

  • García, A., E. Contreras, and B. Domínguez, Developments in geothermal energy in Mexico—part 33. Simultaneous determination of the thermal properties of geothermal drill cores, Heat Recov. Syst. CHP, 11, 131–139, 1991.

    Article  Google Scholar 

  • Goto, S. and O. Matsubayashi, Inversion of needle-probe data for sediment thermal properties of the eastern flank of the Juan de Fuca Ridge, J. Geophys. Res., 113, B08105, doi:10.1029/2007JB005119, 2008.

  • Horai, K., Thermal conductivity of rock-forming minerals, J. Geophys. Res., 76, 1278–1308, 1971.

    Article  Google Scholar 

  • Horai, K. and G. Simmons, Thermal conductivity of rock-forming minerals, Earth Planet. Sci. Lett., 6, 359–368, 1969.

    Article  Google Scholar 

  • Jaeger, J. C., Conduction of heat in an infinite region bounded internally by a circular cylinder of a perfect conductor, Aust. J. Phys., 9, 167–179, 1956.

    Article  Google Scholar 

  • Johnson, G. R. and G. R. Olhoeft, Density of Rocks and Minerals, in CRC Handbook of Physical Properties of Rocks, Vol. III, edited by R. S. Carmichael, 1–38, CRC Press, Boca Raton, Florida, 1984.

    Google Scholar 

  • Kaye, G. W. C. and T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 15th ed., 477 pp., Longman, London, 1986.

    Google Scholar 

  • Kinoshita, M., Estimating of grain thermal conductivity in the turbidite sediment of the Juan de Fuca Ridge, Proc. ODP, Sci. Results, 139, 553–558, College Station, TX (Ocean Drilling Program), 1994.

    Google Scholar 

  • Ochsner, T. E., R. Horton, and T. H. Ren, A new perspective on soil thermal properties, Soil Sci. Soc. Am. J., 65, 1641–1647, 2001.

    Article  Google Scholar 

  • Robie, R. A., B. S. Hemingway, and J. R. Fisher, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascal) pressure and at higher temperatures, U.S. Geol. Surv. Bull., 1452, 298–310, 1978.

    Google Scholar 

  • Sandwell, D. T. and W. H. F. Smith, Marine gravity anomaly from Geosat and ERS 1 satellite altimetry, J. Geophys. Res., 102, 10039–10054, 1997.

    Article  Google Scholar 

  • Shipboard Scientific Party, Rough basement transect (Site 1026 and 1027), Proc. ODP, Init. Repts., 168, College Station, TX (Ocean Drilling Program), 1997.

    Google Scholar 

  • Skauge, A., N. Fuller, and L. G. Hepler, Specific heats of clay minerals: sodium and calcium kaolinites, sodium and calcium montmorillonites, illite, and attapulgite, Thermochim. Acta, 61, 139–145, 1983.

    Article  Google Scholar 

  • Underwood, M. B., K. D. Hoke, A. T. Fisher, E. E. Davis, E. Giambalvo, L. Zuhlsdorff, and G. A. Spinelli, Provenance, stratigraphic architecture, and hydrogeologic influence of turbidites on the mid-ocean ridge flank of northwestern Cascadia Basin, Pacific Ocean, J. Sediment. Res., 75, 149–164, 2005.

    Article  Google Scholar 

  • Von Herzen, R. P. and A. E. Maxwell, The measurement of thermal conductivity of deep-sea sediments by a needle-probe method, J. Geophys. Res., 64, 1557–1563, 1959.

    Article  Google Scholar 

  • Woodside, W. and J. H. Messmer, Thermal conductivity of porous media. I. unconsolidated sands, J. Appl. Phys., 32, 1688–1699, 1961.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusaku Goto.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Goto, S., Matsubayashi, O. Relations between the thermal properties and porosity of sediments in the eastern flank of the Juan de Fuca Ridge. Earth Planet Sp 61, 863–870 (2009). https://doi.org/10.1186/BF03353197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353197

Key words

  • Thermal properties
  • thermal conductivity
  • thermal diffusivity
  • heat capacity
  • specific heat
  • porosity
  • marine sediment
  • mineral composition