Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Asperity along the North Anatolian Fault imaged by magnetotellurics at Düzce, Turkey

Abstract

The magnetotelluric (MT) method has been applied to show resistivity variations in the vicinity of the epicenter of the 1999 Düzce earthquake (Mw = 7.2) where a large rupture velocity difference was seen between the western and eastern parts of the epicenter. MT data for frequencies ranging between 320 and 0.0005 Hz were acquired along two parallel profiles to the west and the east of Düzce earthquake’s epicenter. Both profiles crossed the Düzce basin and the Düzce fault in the north and the North Anatolian Fault (NAF) in the south. MT data analysis shows almost two-dimensionality in the region, at the depth starting from 2–3 km beneath the surface. According to two-dimensional MT modeling, a higher resistive layer extends beneath the eastern side of Düzce earthquake epicenter, compared with the western side. This resistivity structure correlates well with the aftershock distribution of the Düzce earthquake.

References

  1. Aizawa, K., R. Yoshimura, N. Oshiman, K. Yamazaki, T. Uto, Y. Ogawa, S. B. Tank, W. Kanda, S. Sakanaka, Y. Furukawa, T. Hashimoto, M. Uyeshima, T. Ogawa, I. Shiozaki, and T. Hurst, Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential, Earth Planet. Sci. Lett., 235, 343–355, 2005.

  2. Akyüz, H. S., R. Hartleb, A. Barka, E. Altunel, G. Sunal, B. Meyer, and ve R. Armijo, Surface rupture and slip distribution of the 12 November 1999 Düzce earthquake (M 7.1), North Anatolian Fault, Bolu, Turkey, Bull. Seismol. Soc. Am., 92(1), 61–66, 2002.

  3. Ayhan, M. E., R. Bürgman, S. McClusky, O. Lenk, B. Aktug, E. Herece, and R. E. Reilinger, Kinematics of the Mw = 7.2, 12 November 1999, Düzce, Turkey earthquake, Geophys. Res. Lett., 28, 367–370, 2001.

  4. Berdichevsky, M. N., V. I. Dimitriev, and E. E. Pozdnjakova, On twodimensional interpretation of magnetotelluric soundings, Geophys. J. Int., 133, 585–606, 1998.

  5. Birgören, G., H. Sekiguchi, and K. Irikura, Rupture model of the 1999 Düzce, Turkey, earthquake deduced from high and low frequency strong motion data, Geophys. Res. Lett., 31, L05610, 2004.

  6. Bouin, M. P., M. Bouchon, H. Karabulut, and M. Aktar, Rupture process of the 1999 November 12 Düzce (Turkey) earthquake deduced from strong motion and Global Positioning System measurements, Geophys. J. Int., 159, 207–211, 2004.

  7. Bouchon, M. and H. Karabulut, The aftershock signature of supershear earthquakes, Science, 320, 1323–1325, 2008.

  8. Bouchon, M., M. P. Bouin, H. Karabulut, M. N. Toksöz, M. Dietrich, and A. J. Rosakis, How fast is Rupture during an earthquake? New Insights from the 1999 Turkey earthquakes, Geophys. Res. Lett., 28(14), 2723–2726, 2001.

  9. Bürgmann, R., M. E. Ayhan, E. J. Fielding, T. J. Wright, S. McClusky, B. Aktug, C. Demir, O. Lenk, and A. Türkezer, Deformation during the 12 November 1999 Düzce, Turkey, earthquake, from GPS and InSar Data, Bull. Seismol. Soc. Am., 92, 161–171, 2002.

  10. Çağlar, I. and T. İşseven, Two-dimensional geoelectrical structure of the Göynük geothermal area, northwest Anatolia, Turkey, J. Volcanol. Geotherm. Res., 134, 183–197, 2004.

  11. Çakır, Z., A. A. Barka, J. B. De Chabalier, R. Armijo, and B. Meyer, Kinematics of the November 12, 1999 (Mw = 7.2) Düzce earthquake deduced from SAR interferometry, Turkish J. Earth Sci. (Turkish J. Earth Sci.), 12, 105–118, 2003.

  12. Constable, S. C., A. S. Orangez, G. M. Hoversten, and H. F. Morrison, Marine magnetotellurics for petroleum exploration, Part I: A sea-floor equipment system, Geophysics, 63(3), 816–825, 1998.

  13. Elmas, A. and A. Gürer, A comparison of the geological and geoelectrical structures in the Eastern Marmara Region (NW Turkey), J. Asian Earth Sci., 23, 153–162, 2004.

  14. Gamble, T. D., W. M. Goubau, and J. Clark, Magnetotelluric with a remote magnetic reference, Geophysics, 44, 53–68, 1979.

  15. Groom, R. W. and R. C. Bailey, Decomposition of magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion, J. Geophys. Res., 94, 1913–1925, 1989.

  16. Gürer, A., Magnetotelluric images of the crust and mantle in the southwestern Taurides, Turkey, Tectonophysics, 392, 109–120, 2004.

  17. Honkura, Y., A. M. Işıkara, N. Oshiman, A. Ito, B. Üçer, Ş. Barış, M. K. Tunçer, M. Matsushima, R. Pektaş, C. Çelik, S. B. Tank, F. Takahashi, M. Nakanishi, R. Yoshimura, Y. Ikeda, and T. Komut, Preliminary results of multidisciplinary observations before, during and after the Kocaeli.Izmit) earthquake in the western part of the North Anatolian fault zone, Earth Planets Space, 52, 293–298, 2000.

  18. Jones, A. G., Imaging the continental upper mantle using electromagnetic methods, Lithos, 48, 57–80, 1999.

  19. Key, K. and S. Constable, Broadband Marine MT exploration of the East Pacific Rise at 9dg?50′N, Geophys. Res. Lett., 29(22), 2054, 2002.

  20. McNeice, G.W. and A. G. Jones, Multisite, multifrequency tensor decomposition of magnetotelluric data, Geophysics, 66(1), 158–173, 2001.

  21. Ogawa, Y. and T. Uchida, A two-dimensional magnetotelluric inversion assuming Gaussian static shift, Geophys. J. Int., 126, 69–76, 1996.

  22. Ogawa, Y., N. Matsushima, H. Oshima, S. Takakura, M. Utsugi, K. Hirano, M. Igarashi, and T. Doi, A resistivity cross-section of Usu volcano, Hokkaido, Japan, by audiomagnetotelluric soundings, Earth Planets Space, 50, 339–346, 1998.

  23. Oshiman, N., R. Yoshimura, T. Kasaya, Y. Honkura, M. Matsushima, S. Baris, C. Celik, M. K. Tunçer, and A. M. Işıkara, Deep resistivity structure around the fault associated with the 1999 Kocaeli earthquake, Turkey, Seismotectonics, in Convergent Plate Boundary, edited by Y. Fujinawa and A. Yoshida, 293–303, Terra Scientific Publishing Company, Tokyo, 2002.

  24. Ritter, O., A. Hoffmann-Rothe, P. A. Bedrosian, U. Weckmann, and V. Haak, Electrical conductivity images of active and fossil fault zones, Geol. Soc. London (Special Publications), 245, 165–186, 2005.

  25. Simpson, F., Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable?, Earth Planet. Sci. Lett., 203, 535–547, 2002.

  26. Şengör, A.M. C., O. Tüysüz, C. İmren, M. Sakınç, H. Eyidoğgan, N. Görür, X. Le Pichon, and C. Rangin, The North Anatolian Fault: A new look, Ann. Rev. Earth Planet. Sci., 33, 37–112, 2005.

  27. Tank, S. B., Y. Honkura, Y. Ogawa, N. Oshiman, M. K. Tunçer, M. Matsushima, C. Çelik, E. Tolak, and A. M. Işıkara, Resistivity structure in the western part of the fault rupture zone associated with the 1999 İzmit earthquake and its seismogenic implication, Earth Planets Space, 55, 437–442, 2003.

  28. Tank, S. B., Y. Honkura, Y. Ogawa, M. Matsushima, N. Oshiman, M. K. Tunçer, C. Çelik, E. Tolak, and A. M. Işıkara, Magnetotelluric imaging of the fault rupture area of the 1999 İzmit (Turkey) earthquake, Phys. Earth Planet. Inter., 150, 213–225, 2005.

  29. Tibi, R., G. Bock, Y. Xia, M. Baumbach, H. Grosser, C. Milkereit, S. Karakisa, S. Zünbül, R. Kind, and J. Zschau, Rupture process of the 1999 August 17 Izmit and November 12 Düzce (Turkey) earthquakes, Geophys. J. Int., 144, F1–F7, 2001.

  30. Unsworth, M., B. Bedrosian, M. Eisel, G. Egbert, and W. Siripunvaraporn, Along strike variations in the electrical structure of the San Andreas fault at Parkfield, California, Geophys. Res. Lett., 27(18), 3021–3024, 2000.

  31. Yiğitbaş, E., A. Elmas, and Y. Yılmaz, Pre-Cenozoic tectono-stratigraphic components of the Western Pontides and their geological evolution, Geol. J., 34, 55–74, 1999.

  32. Yılmaz, Y., O. Tüysüz, E. Yiğitbaş, C. Genç, and A. M. C. Şengör, Geology and tectonic evolution of the pontides, in Regional and Petroleum Geology of the Black Sea and surronding region, edited by A. G. Robinson, American Assoc. of. Petrol. Geol., Memoirs 68, 138–226, 1997.

  33. Wannamaker, P. E. and W. M. Doerner, Crustal structure of the Ruby Mountains and southern Carlin Trend region, Nevada, from magnetotelluric data, Ore Geol. Rev., 21, 185–210, 2002.

  34. Wei, W., M. Unsworth, A. Jones, J. Booker, H. Tan, D. Nelson, L. Chen, S. Li, K. Solon, P. Bedrosian, S. Jin, M. Deng, J. Ledo, D. Kay, and B. Roberts, Detection of widespread fluids in the Tibetan Crust by magnetotelluric studies, Science, 292(5517), 716–719, 2001.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tulay Kaya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaya, T., Tank, S.B., Tunçer, M.K. et al. Asperity along the North Anatolian Fault imaged by magnetotellurics at Düzce, Turkey. Earth Planet Sp 61, 871–884 (2009). https://doi.org/10.1186/BF03353198

Download citation

Key words

  • Turkey
  • Düzce earthquake
  • magnetotelluric
  • resistivity
  • conductor
  • rupture velocity