Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Dependence of waveform of near-field coseismic ionospheric disturbances on focal mechanisms

Abstract

Using Total Electron Content (TEC) measurements with Global Positioning System we studied ionospheric responses to three large earthquakes that occurred in the Kuril Arc on 04 October 1994, 15 November 2006, and 13 January 2007. These earthquakes have different focal mechanisms, i.e. high-angle reverse, low-angle reverse, and normal faulting, respectively. TEC responses to the 2006 and 2007 events initiated with positive and negative changes, respectively. On the other hand, the initial TEC changes in the 1994 earthquake showed both positive and negative polarities depending on the azimuth around the focal area. Such a variety may reflect differences in coseismic vertical crustal displacements, which are dominated by uplift and subsidence in the 2006 and 2007 events, respectively, but included both in the 1994 event.

References

  1. Afraimovich, E. L., N. P. Perevalova, A. V. Plotnikov, and A. M. Uralov, The shock-acoustic waves generated by the earthquakes, Ann. Geophys., 19, 395–409, 2001.

    Article  Google Scholar 

  2. Afraimovich, E. L., E. I. Astafieva, and V. V. Kirushkin, Localization of the source of ionospheric disturbance generated during an earthquake, Int. J. Geomag. Aeronomy, 6, doi:10.1029/2004GI000092, 2006.

  3. Ammon, Ch. J., H. Kanamori, and T. Lay, A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands, Nature, 451, 561–565, 2008.

    Article  Google Scholar 

  4. Artru, J., P. Lognonne, and E. Blanc, Normal modes modelling of postseismic ionospheric oscillations, Geophys. Res. Lett., 28, 697–700, 2001.

    Article  Google Scholar 

  5. Artru, J., T. Farges, and P. Lognonné, Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling, Geophys. J. Int., 158, 1067–1077, 2004.

    Article  Google Scholar 

  6. Astafyeva, E. I. and E. L. Afraimovich, Long-distance propagation of traveling ionospheric disturbances caused by the great Sumatra-Andaman earthquake on 26 December 2004, Earth Planets Space, 58, 1025–1031, 2006.

    Article  Google Scholar 

  7. Blanc, E., Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: A summary, Ann. Geophys., 3, 673–687, 1985.

    Google Scholar 

  8. Calais, E. and J. B. Minster, GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045–1048, 1995.

    Article  Google Scholar 

  9. Calais, E. and J. B. Minster, GPS, earthquakes, the ionosphere, and the Space Shuttle, Phys. Earth Planet. Inter., 105, 167–181, 1998.

    Article  Google Scholar 

  10. Dautermann, T., E. Calais, and G. S. Mattioli, GPS detection and energy estimation of the ionospheric wave caused by the July 13th, 2003 explosion of the Soufriere Hills Volcano, Montserrat, J. Geophys. Res., doi:10.1029/2008JB005722, 2008 (in press).

    Google Scholar 

  11. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions, Geophys. J. Int., 101, 425–478, 1990.

    Article  Google Scholar 

  12. Ducic, V., J. Artru, and P. Lognonne, Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves, Geophys. Res. Lett., 30(18), 1951, doi:10.1029/2003GL017812, 2003.

    Article  Google Scholar 

  13. Heki, K. and J. Ping, Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array, Earth Planet. Sci. Lett., 236, 845–855, 2005.

    Article  Google Scholar 

  14. Heki, K., S. Miyazaki, H. Takahashi, M. Kasahara, F. Kimata, S. Miura, N. Vasilenco, A. Ivashchenco, and K. An, The Amurian Plate motion and current plate kinematics in eastern Asia, J. Geophys. Res., 104, 29147–29155, 1999.

    Article  Google Scholar 

  15. Heki, K., Y. Otsuka, N. Choosakul, N. Hemmakorn, T. Komolmis, and T. Maruyama, Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances, J. Geophys. Res., 111, doi:10.1029/2005JB004202, 2006.

  16. Kikuchi, M. and H. Kanamori, The Shikotan earthquake of October 4, 1994: Lithospheric Earthquake, Geophys. Res. Lett., 22, 1025–1028, 1995.

    Article  Google Scholar 

  17. Liu, J. Y., Y. B. Tsai, S. W. Chen, C. P. Lee, Y. C. Chen, H. Y. Yen, W. Y. Chang, and C. Liu, Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake on 26 December 2004, Geophys. Res. Lett., 33, L02103, doi:10.1029/2005GL023963, 2006.

    Google Scholar 

  18. Lognonne, P., J. Artru, R. Garcia, F. Crespon, V. Ducic, E. Jeansou, G. Occhipinti, J. Helbert, G. Moreaux, and P. E. Godet, Ground based GPS imaging of ionospheric post-seismic signal, Planet. Space Sci., 54, 528–540, 2006.

    Article  Google Scholar 

  19. Naugolnykh, K. and L. Ostrovsky, Nonlinear Wave Processes in Acoustics, 312 pp, Cambridge University Press, New York, 1998.

    Google Scholar 

  20. Occhipinti, G., A. Kherani, and P. Lognonne, Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves, Geophys. J. Int., 173, doi:10.1111/j.1365-246X.2008.03760.x, 2008.

  21. Okada, Y., Internal deformation due to shear and tensile faults in a halfspace, Bull. Seismol. Soc. Am., 82, 1018–1040, 1992.

    Google Scholar 

  22. Ostrovsky, L. A., Ionospheric effects of ground motion: the roles of magnetic field and nonlinearity, J. Atmos. Sol.-Terr. Phys., 70, 1273–1280, 2008.

    Article  Google Scholar 

  23. Pavlov, V. A., The acoustic pulse above the epicenter of an earthquake, J. Geomag. Aeronomy, 26, 678–683, 1986.

    Google Scholar 

  24. Shida, T., Memoirs on “Researches of the rigidity and the waves within the Earth and crust”, Toyo-Gakugei-Zasshi, 45, 275–289, 1929 (in Japanese).

    Google Scholar 

  25. Tsuji, H., Y. Hatanaka, T. Sagiya, and M. Hashimoto, Coseismic crustal deformation from the 1994 Hokkaido-Toho-Oki earthquake monitored by a nationwide continuous GPS array in Japan, Geophys. Res. Lett., 22, 1669–1672, 1995.

    Article  Google Scholar 

  26. Yamanaka, Y. and M. Kikuchi, Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 109, B07307, doi:10.1029/2003JB002683, 2004.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elvira Astafyeva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Astafyeva, E., Heki, K. Dependence of waveform of near-field coseismic ionospheric disturbances on focal mechanisms. Earth Planet Sp 61, 939–943 (2009). https://doi.org/10.1186/BF03353206

Download citation

Key words

  • Coseismic ionosphere disturbances
  • TEC
  • GPS
  • earthquakes
  • focal mechanism