Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

The vorticity dynamics of instability and turbulence in a breaking internal gravity wave

Abstract

We perform a three-dimensional simulation of a breaking internal gravity wave in a stratified, compressible, and sheared fluid to investigate the vorticity dynamics accompanying the transition from laminar to turbulent flow. Baroclinic sources contribute preferentially to eddy vorticity generation during the initial convective instability of the wave field, yielding counter-rotating vortices aligned with the external shear flow. These vortices enhance the spanwise vorticity of the shear flow via stretching and distort the spanwise vorticity via advective tilting. The resulting vortex sheets undergo a dynamical (Kelvin-Helmholtz) instability which rolls the vortex sheets into tubes which link, in turn, with the original streamwise convective rolls to produce a collection of intertwined vortex loops. Following the formation of discrete vortex loops, the most important interactions are the self-interactions of single vortex tubes and the mutual interactions of adjacent vortex tubes in close proximity. The initial formation of vortex tubes from the roll-up of localized vortex sheets imposes axial vorticity variations having both axisymmetric and azimuthal wavenumber two components. Axisymmetric variations excite axisymmetric twist waves, or Kelvin vortex waves, which propagate along the tubes, drive axial flows, and deplete and fragment the tubes. Azimuthal wavenumber two variations excite m = 2 twist waves on the vortex tubes which amplify and unravel single vortex tubes into pairs of intertwined helical tubes. Other interactions, judged less fundamental to the turbulence cascade, include reconnection among tube fragments, mutual stretching of orthogonal tubes in close proximity, excitation of azimuthal wavenumber one twist waves, and the continual roll-up of weaker vortex sheets throughout the evolution. Collectively, these vortex interactions result in a rapid cascade of energy and enstrophy toward smaller scales of motion.

References

  • Acarlar, M. S. and C. R. Smith, A study of hairpin vortices in a laminar boundary layer. Part II: Hairpin vortices generated by fluid injection, J. Fluid Mech., 175, 43–83, 1987.

    Article  Google Scholar 

  • Andreassen, Ø., C. E. Wasberg, D. C. Fritts, and J. R. Isler, Gravity wave breaking in two and three dimensions, 1. Model description and comparison of two-dimensional evolutions, J. Geophys. Res., 99, 8095–8108, 1994a.

    Article  Google Scholar 

  • Andreassen, Ø., I. Lie, and C. E. Wasberg, The spectral viscosity method applied to simulation of waves in a stratified atmosphere, J. Comp. Phys., 110, 257–273, 1994b.

    Article  Google Scholar 

  • Andreassen, Ø., P. O. Hvidsten, D. C. Fritts, and S. Arendt, Vorticity dynamics in a breaking gravity wave 1: Initial instability evolution, J. Fluid Mech., 367, 27–46, 1998.

    Article  Google Scholar 

  • Arendt, S., D. C. Fritts, and Ø. Andreassen, The initial value problem for Kelvin vortex waves, J. Fluid Mech., 344, 181–212, 1997.

    Article  Google Scholar 

  • Betchov, R., On the fine structure of turbulent flows, J. Fluid Mech., 3, 205–216, 1957.

    Article  Google Scholar 

  • Boratav, O. N., R. B. Pelz, and N. J. Zabusky, Reconnection in orthogonally interacting vortex tubes: Direct numerical simulations and quantifications, Phys. Fluids A, 4, 581–605, 1992.

    Article  Google Scholar 

  • Cadot, O., S. Douady, and Y. Couder, Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow, Phys. Fluids A, 7, 630–646, 1995.

    Article  Google Scholar 

  • Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, 567 pp., Springer, 1988.

  • Caulfield, C. P. and W. R. Peltier, Three dimensionalization of the stratified mixing layer, Phys. Fluids A, 6, 3803–3805, 1994.

    Article  Google Scholar 

  • Davis, P. A. and W. R. Peltier, Some characteristics of the Kelvin-Helmholtz and resonant overreflection modes of shear instability and of their interaction through vortex pairing, J. Atmos. Sci., 36, 2394–2412, 1979.

    Article  Google Scholar 

  • Drazin, P. G., The stability of a shear layer in an unbounded heterogeneous inviscid fluid, J. Fluid Mech., 4, 214–224, 1958.

    Article  Google Scholar 

  • Dunkerton, T. J., Inertio-gravity waves in the stratosphere, J. Atmos. Sci., 41, 3396–3404, 1984.

    Article  Google Scholar 

  • Dunkerton, T. J., Shear instability of internal inertia-gravity waves, J. Atmos. Sci., 54, 1628–1641, 1997.

    Article  Google Scholar 

  • Erlebacher, G. and S. Sarkar, Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence, Phys. Fluids A, 5, 3240–3254, 1993.

    Article  Google Scholar 

  • Fritts, D. C., Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear layer, J. Atmos. Sci., 41, 524–537, 1984.

    Article  Google Scholar 

  • Fritts, D. C. and P. K. Rastogi, Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci., 20, 1247–1277, 1985.

    Article  Google Scholar 

  • Fritts, D. C. and L. Yuan, Stability analysis of inertio-gravity wave structure in the middle atmosphere, J. Atmos. Sci., 46, 1738–1745, 1989.

    Article  Google Scholar 

  • Fritts, D. C., J. R. Isler, and Ø. Andreassen, Gravity wave breaking in two and three dimensions, 2. Three dimensional evolution and instability structure, J. Geophys. Res., 99, 8109–8123, 1994.

    Article  Google Scholar 

  • Fritts, D. C., J. F. Garten, and Ø. Andreassen, Wave breaking and transition to turbulence in stratified shear flows, J. Atmos. Sci., 53, 1057–1085, 1996a.

    Article  Google Scholar 

  • Fritts, D. C., T. L. Palmer, Ø. Andreassen, and I. Lie, Evolution and breakdown of Kelvin-Helmholtz billows in stratified compressible flows, I: Comparison of two- and three-dimensional flows, J. Atmos. Sci., 53, 3173–3191, 1996b.

    Article  Google Scholar 

  • Fritts, D. C., J. R. Isler, J. H. Hecht, R. L. Walterscheid, and Ø. Andreassen, Wave breaking signatures in sodium densities and OH airglow, Part II: Simulation of wave and instability structures, J. Geophys. Res., 102, 6669–6684, 1997.

    Article  Google Scholar 

  • Fritts, D. C., S. Arendt, and Ø. Andreassen, Vorticity dynamics in abreaking internal gravity wave, 2. Vortex interactions and transition to turbulence, J. Fluid Mech., 367, 47–65, 1998.

    Article  Google Scholar 

  • Gerz, T., Coherent structures in stratified turbulent shear flows deduced from direct simulations, in Turbulence and Coherent Structures, edited by O. Metais and M. Lesieur, Kluwar, Dordrecht, the Netherlands, 1991.

    Google Scholar 

  • Gerz, T., J. Howell, and L. Mahrt, Vortex structures and microfronts, Phys. Fluids A, 6, 1242–1251, 1994.

    Article  Google Scholar 

  • Heisenberg, W., Zur statistischen theorie der turbulenz, Z. Physik, 124, 628–657, 1948.

    Article  Google Scholar 

  • Herring, J. R. and R. M. Kerr, Development of enstrophy and spectra in numerical turbulence, Phys. Fluids A, 5, 2792–2798, 1993.

    Article  Google Scholar 

  • Hill, R. J., D. E. Gibson-Wilde, J. A. Werne, and D. C. Fritts, Turbulence-induced fluctuations in ionization and application to PMSE, Earth Planets Space, 51, this issue, 499–513, 1999.

    Article  Google Scholar 

  • Hodges, R. R., Jr., Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophys. Res., 72, 3455–3458, 1967.

    Article  Google Scholar 

  • Hopfinger, E. J., F. K. Browand, and Y. Gagne, Turbulence and waves in a rotating tank, J. Fluid Mech., 125, 505–534, 1982.

    Article  Google Scholar 

  • Isler, J. R., D. C. Fritts, and Ø. Andreassen, Gravity wave breaking in two and three dimensions 3. Vortex breakdown and transition to isotropy, J. Geophys. Res., 99, 8125–8137, 1994.

    Article  Google Scholar 

  • Jeong, J. and F. Hussain, On the identification of a vortex, J. Fluid Mech., 285, 69–94, 1995.

    Article  Google Scholar 

  • Jimenez, J., Hyperviscous vortices, J. Fluid Mech., 279, 169–176, 1994.

    Article  Google Scholar 

  • Jimenez, J., A. A. Wray, P. G. Saffman, and R. S. Rogallo, The structure of intense vorticity in isotropic turbulence, J. Fluid Mech., 255, 65–90, 1993.

    Article  Google Scholar 

  • Kelvin, Lord, Vibrations of a columnar vortex, Phil. Mag., 10, 155–168, 1880.

    Article  Google Scholar 

  • Kida, S. and M. Takaoka, Vortex reconnection, Ann. Rev. Fluid Mech., 26, 169–189, 1994.

    Article  Google Scholar 

  • Klaassen, G. P. and W. R. Peltier, The onset of turbulence in finite-amplitude Kelvin-Helmholtz billows, J. Fluid Mech., 155, 1–35, 1985.

    Article  Google Scholar 

  • Kline, S. J., W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, The structure of turbulent boundary layers, J. Fluid Mech., 30, 741–773, 1967.

    Article  Google Scholar 

  • Koop, C. G. and F. K. Browand, Instability and turbulence in stratified fluid with shear, J. Fluid Mech., 93, 135–159, 1979.

    Article  Google Scholar 

  • Landahl, M. T. and E. Mollo-Christensen, Turbulence and Random Processes in Fluid Mechanics, Cambridge Univ. Press., 1992.

  • LeLong, M.-P. and T. J. Dunkerton, Inertia-gravity wave breaking in three dimensions, 1. Convectively stable waves, J. Atmos. Sci., 55, 2473–2488, 1998a.

    Article  Google Scholar 

  • LeLong, M.-P. and T. J. Dunkerton, Inertia-gravity wave breaking in three dimensions, 2. Convectively unstable waves, J. Atmos. Sci., 55, 2489–2501, 1998b.

    Article  Google Scholar 

  • Lundgren, T. S., Strained spiral vortex model for turbulent fine structure, Phys. Fluids, 25, 2193–2203, 1982.

    Article  Google Scholar 

  • Maxworthy, T., E. J. Hopfinger, and L. G. Redekopp, Wave motions on vortex cores, J. Fluid Mech., 151, 141–165, 1985.

    Article  Google Scholar 

  • Melander, M. V. and F. Hussain, Core dynamics on a vortex column, Fluid Dyn. Res., 13, 1–37, 1994.

    Article  Google Scholar 

  • Melander, M. V. and F. Hussain, Polarized vorticity dynamics on a vortex column, Phys. Fluid A, 5, 1992–2003, 1995.

    Article  Google Scholar 

  • Metais, O., C. Flores, S. Yanase, J. Riley, and M. Lesieur, Rotating free-shear flows. Part 2. Numerical simulations, J. Fluid Mech., 293, 47–80, 1995.

    Article  Google Scholar 

  • Metcalfe, R. W., S. A. Orsag, M. E. Brachet, S. Menon, and J. J. Riley, Secondary instability of a temporally growing mixing layer, J. Fluid Mech., 184, 207–243, 1987.

    Article  Google Scholar 

  • Palmer, T. L., D. C. Fritts, Ø. Andreassen, and I. Lie, Three-dimensional evolution of Kelvin-Helmholtz billows in stratified compressible flow, Geophys. Res. Lett., 21, 2287–2290, 1994.

    Article  Google Scholar 

  • Palmer, T. L., D. C. Fritts, and O. Andreassen, Secondary convective and dynamical instabilities of Kelvin-Helmholtz billows in three-dimensional stratified compressible flow, J. Fluid Mech., submitted, 1996.

  • Patnaik, P. C., F. S. Sherman, and G. M. Corcos, A numerical simulation of Kelvin-Helmholtz waves of finite amplitude, J. Fluid Mech., 73, 215–240, 1976.

    Article  Google Scholar 

  • Pumir, A. and E. Siggia, Collapsing solutions to the 3-D Euler equations, Phys. Fluids A, 2, 220–241, 1990.

    Article  Google Scholar 

  • Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601–639, 1991.

    Article  Google Scholar 

  • Rogers, M. M. and P. Moin, The structure of the vorticity field in homogeneous turbulent flows, J. Fluid Mech., 176, 33–66, 1987.

    Article  Google Scholar 

  • Saffman, P. G., Vortex Dynamics, 311 pp., Cambridge., 1992.

  • Sandham, N. D. and L. Kleiser, The late stages of transition to turbulence in channel flow, J. Fluid Mech., 245, 319–348, 1992.

    Article  Google Scholar 

  • Schoppa, W., F. Hussain, and R. W. Metcalfe, A new mechanism of small scale transition in a plane mixing layer: core dynamics of spanwise vortices, J. Fluid Mech., 298, 23–80, 1995.

    Article  Google Scholar 

  • Scinocca, J. F., The mixing of mass and momentum by Kelvin-Helmholtz billows, J. Atmos. Sci., 52, 2509–2530, 1995.

    Article  Google Scholar 

  • Scotti, R. S. and G. M. Corcos, An experiment on the stability of small disturbances in a stratified free shear layer, J. Fluid Mech., 52, 499–528, 1972.

    Article  Google Scholar 

  • She, Z. S., E. Jackson, and S. A. Orszag, Intermittent vortex structures in homogeneous isotropic turbulence, Nature, 344, 226–228, 1990.

    Article  Google Scholar 

  • Shelley, M. J., D. I. Meiron, and S. A. Orszag, Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes, J. Fluid Mech., 246, 613–652, 1993.

    Article  Google Scholar 

  • Sonmor, L. J. and G. P. Klaassen, Toward a unified theory of gravity wave stability, J. Atmos. Sci., 54, 2655–2680, 1997.

    Article  Google Scholar 

  • Thorpe, S. A., Laboratory observations of secondary structures in Kelvin-Helmholtz billows and consequences for ocean mixing, Geophys. Astrophys. Fluid Dyn., 34, 175–199, 1985.

    Article  Google Scholar 

  • Vincent, A. and M. Meneguzzi, The spatial structure and statistical properties of homogeneous turbulence, J. Fluid Mech., 225, 1–20, 1991.

    Article  Google Scholar 

  • Vincent, A. and M. Meneguzzi, The dynamics of vorticity tubes in homogeneous turbulence, J. Fluid Mech., 258, 245–254, 1994.

    Article  Google Scholar 

  • Winters, K. B. and E. A. D’Asaro, 3D wave breaking near a critical level, J. Fluid Mech., 272, 255–284, 1994.

    Article  Google Scholar 

  • Winters, K. B. and J. Riley, Instability of internal waves near a critical level, Dyn. of Atmos. and Oceans, 16, 249–278, 1992.

    Article  Google Scholar 

  • Yuan, L. and D. C. Fritts, Influence of a mean shear on the dynamical instability of an inertio-gravity wave, J. Atmos. Sci., 46, 2562–2568, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Fritts.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fritts, D.C., Arendt, S. & Andreassen, Ø. The vorticity dynamics of instability and turbulence in a breaking internal gravity wave. Earth Planet Sp 51, 457–473 (1999). https://doi.org/10.1186/BF03353208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353208

Keywords

  • Vortex
  • Vorticity
  • Gravity Wave
  • Vortex Tube
  • Streamwise Vortex