Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Turbulence-induced fluctuations in ionization and application to PMSE

Abstract

The temporal evolution of a turbulent layer is calculated in detail by solving the hydrodynamic equations. The turbulence is initiated by a Kelvin-Helmholtz instability. The field of potential-temperature fluctuations serves as a tracer for modeling entrainment of the mixing ratios of ionized constituents hypothesized to be present in the upper polar mesosphere. This entrainment modeling provides the input to a turbulence advection model capable of calculating the spectra and cospectra of ions and electrons. The turbulence advection model is used as a subgrid-scale model and is required because, given present or foreseeable computer capabilities, numerical solutions cannot span the enormous range of spatial scales from the depth of the shear layer to the smallest scales on which the most massive ions diffuse. The power spectrum of electron number-density fluctuations obtained from the turbulence advection model is compared with that measured by a rocket during the STATE (Structure and Atmospheric Turbulence Environment) experiment; agreement is found for a case of massive ions. The radar cross section for Bragg scattering is calculated from the electron number-density power spectrum and is used to calculate the signal-to-noise ratio (S/N) for the Poker Flat 50 MHz radar. The resultant S/N is then compared with the radar measurements obtained during the STATE experiment. These comparisons support the hypothesis that massive ions can cause polar mesosphere summer echoes from turbulent layers. Large-scale morphology of the turbulent layer obtained from rocket and radar measurements is reproduced by the hydrodynamic solution.

References

  • Andreassen, Ø., P. Ø. Hvidsten, D. C. Fritts, and S. Arendt, Vorticity dynamics in a breaking gravity wave, 1. Initial instability evolution, J. Fluid Mech., 367, 27–46, 1998.

    Article  Google Scholar 

  • Arendt, S., D. C. Fritts, and Ø. Andreassen, The initial value problem for Kelvin vortex waves, J. Fluid Mech., 344, 181–212, 1997.

    Article  Google Scholar 

  • Björn, L. G., E. Kopp, U. Herrmann, P. Eberhardt, P. H. G. Dickinson, D. J. Mackinnon, F. Arnold, G. Witt, A. Lundin, and D. B. Jenkins, Heavy ionospheric ions in the formation process of noctilucent clouds, J. Geophys. Res., 90, D5, 7985, 1985.

    Article  Google Scholar 

  • Cho, J. Y. N., Radar Scattering from the Summer Polar Mesosphere: Theory and Observations, 204 pp., Ph.D. Thesis, Cornell University, Ithaca, New York, 1993.

    Google Scholar 

  • Cho, J. Y. N. and M. C. Kelley, Polar mesosphere summer radar echoes: observations and current theories, Rev. Geophys., 31, 243–265, 1993.

    Article  Google Scholar 

  • Cho, J. Y. N. and J. Röttger, An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res., 102, 2001–2020, 1997.

    Article  Google Scholar 

  • Cho, J. Y. N., T. M. Hall, and M. C. Kelley, On the role of charged aerosols in polar mesosphere summer echoes, J. Geophys. Res., 97, 875–886, 1992.

    Article  Google Scholar 

  • Cho, J. Y. N., C. M. Alcala, M. C. Kelley, and W. E. Swartz, Further effects of charged aerosols on summer mesosphere radar scatter, J. Atmos. Terr. Phys., 58, 661–672, 1996.

    Article  Google Scholar 

  • Fritts, D. C., S. A. Smith, B. B. Balsley, and C. R. Philbrick, Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment, J. Geophys. Res., 93, 7015–7025, 1988.

    Article  Google Scholar 

  • Fritts, D. C., T. L. Palmer, Ø. Andreassen, and I. Lie, Evolution and breakdown of Kelvin-Helmholtz billows in stratified compressible flows, I: Comparison of two- and three-dimensional flows, J. Atmos. Sci., 53, 3173–3191, 1996.

    Article  Google Scholar 

  • Fritts, D. C., S. Arendt, and Ø. Andreassen, Vorticity dynamics in a breaking internal gravity wave, 2. Vortex interactions and transition to turbulence, J. Fluid Mech., 367, 47–65, 1998.

    Article  Google Scholar 

  • Havnes, O., J. Trøim, T. Blix, W. Mortensen, L. I. Naesheim, E. Thrane, and T. Tonnesen, First detection of charged dust particles in the Earth’s mesosphere, J. Geophys. Res., 101, 10839–10847, 1996a.

    Article  Google Scholar 

  • Havnes, O., L. I. Naesheim, T. W. Hartquist, G. E. Morfill, F. Melandso, B. Schleicher, J. Troim, T. Blix, and E. Thrane, Meter-scale variations of the charge carried by mesospheric dust, Planet. Space Sci., 44, 1191–1194, 1996b.

    Article  Google Scholar 

  • Hill, R. J., Nonneutral and quasi-neutral diffusion of weakly ionized multi-constituent plasma, J. Geophys. Res., 83, 989–998, 1978a.

    Article  Google Scholar 

  • Hill, R. J., Models of the scalar spectrum for turbulent advection, J. Fluid Mech., 88, 541–562, 1978b.

    Article  Google Scholar 

  • Hill, R. J. and S. A. Bowhill, Small-scale fluctuations in D-region ionization due to hydrodynamic turbulence, Aeronomy Report No. 75, University of Illinois, Urbana, Illinois, Nov. 1976.

  • Hill, R. J. and S. A. Bowhill, Transient compressional response of D-region ionization, J. Atmos. Terr. Phys., 39, 333–346, 1977.

    Article  Google Scholar 

  • Hill, R. J. and K. A. Mitton, Turbulence-induced ionization fluctuations in the lower ionosphere, NOAA Technical Report ERL 454-ETL 68, November 1998 (available from the author or the National Technical Information Service, 5285 Port Royal Road, Springfield, VA, USA).

  • Hocking, W. K., On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra-I. Theory, J. Atmos. Terr. Phys., 45, 89–102, 1983.

    Article  Google Scholar 

  • Hocking, W. K., An assessment of the capabilities and limitations of radars in measurements of upper atmosphere turbulence, Adv. Space Res., 17, (11)37–(11)47, 1996.

    Article  Google Scholar 

  • Inhester, B., J. C. Ulwick, J. Cho, M. C. Kelley, and G. Schmidt, Consistency of rocket and radar electron density observations: Implication about the anisotropy of mesospheric turbulence, J. Atmos. Terr. Phys., 52, 855–873, 1990.

    Article  Google Scholar 

  • Kelley, M. C. and J. C. Ulwick, Large- and small-scale organization of electrons in the high-latitude mesosphere: implications of the STATE data, J. Geophys. Res., 93, 7001–7008, 1988.

    Article  Google Scholar 

  • Klaassen, G. P. and W. R. Peltier, The onset of turbulence in finite-amplitude Kelvin-Helmholtz billows, J. Fluid Mech., 227, 1–35, 1985.

    Article  Google Scholar 

  • Klostermeyer, J., On the formation of electron depletions at the summer polar mesosphere, Geophys. Res. Lett., 23, 335–338, 1996.

    Article  Google Scholar 

  • Langevin, M. P., Une formule fondamentale de theorie cinetique, Annales de Chimie et de Physique, series 8, 5, 245–288, 1905.

    Google Scholar 

  • Lübken, F.-J., G. Lehmacher, T. Blix, U.-P. Hoppe, E. Thrane, J. Cho, and W. Swartz, First in-situ observations of the Schmidt number within a PMSE layer, Geophys. Res. Lett., 20, 2311–2314, 1993.

    Article  Google Scholar 

  • Lübken, F.-J., K.-H. Fricke, and M. Langer, Noctilucent clouds and the thermal structure near the Arctic mesopause in summer, J. Geophys. Res., 101, 9489–9508, 1996.

    Article  Google Scholar 

  • Lübken, F.-J., M. Rapp, T. Blix, and E. Thrane, Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes, Geophys. Res. Lett., 25, 893–896, 1998.

    Article  Google Scholar 

  • Lumley, J. L. and H. A. Panofsky, The Structure of Atmospheric Turbulence, 239 pp., Interscience Publishers, New York, 1964.

    Google Scholar 

  • McDaniel, E. W., Collision Phenomena in Ionized Gases, 775 pp., Wiley Series in Plasma Physics, John Wiley & Sons, Inc., New York, 1964.

    Google Scholar 

  • Muschinski, A. and C. Wode, First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free troposphere, J. Atmos. Sci., 55, 2893–2906, 1998.

    Article  Google Scholar 

  • Ottersten, H., Radar backscattering from the turbulent clear atmosphere, Radio Sci., 4, 1251–1255, 1969.

    Article  Google Scholar 

  • Palmer, T. L., D. C. Fritts, and Ø. Andreassen, Evolution and breakdown of Kelvin-Helmholtz billows in stratified compressible flows, II: Instability structure, evolution, and energetics, J. Atmos. Sci., 53, 3192–3212, 1996.

    Article  Google Scholar 

  • Pedersen, A., J. Trøim, and J. A. Kane, Rocket measurements showing removal of electrons above the mesopause in summer at high latitude, Planet. Space Sci., 18, 945–947, 1970.

    Article  Google Scholar 

  • Röttger, J., Middle Atmospheric Studies with the EISCATRadars: Polar Mesosphere Summer Echoes, pp. 369–387, Kluwer Academic Publishers, Netherlands, 1993.

    Google Scholar 

  • Rottger, J., Polar mesosphere summer echoes: Dynamics and aeronomy of the mesosphere, Adv. Space Res., 14, (9)123–(9)137, 1994.

    Article  Google Scholar 

  • Royrvik, O. and L. G. Smith, Comparison of mesospheric VHF radar echoes and rocket probe electron number density measurements, J. Geophys. Res., 89, 9014–9022, 1984.

    Article  Google Scholar 

  • Tennekes, H. and J. L. Lumley, A First Course in Turbulence, 300 pp., MIT Press, Cambridge, Mass., 1972.

  • Ulwick, J. C., K. D. Baker, M. C. Kelley, B. B. Balsley, and W. L. Ecklund, Comparison of simultaneous MST radar and electron density probe measurements during STATE, J. Geophys. Res., 93, 6989–7000, 1988.

    Article  Google Scholar 

  • Villars, F. and V. F. Weisskopf, On the scattering of radio waves by turbulent fluctuations of the atmosphere, Proc IRE, 43, 1232–1238, 1955.

    Article  Google Scholar 

  • Watkins, B. J., C. R. Philbrick, and B. B. Balsley, Turbulence energy dissipation rates and inner scale sizes from rocket and radar data, J. Geophys. Res., 93, 7009–7014, 1988.

    Article  Google Scholar 

  • Werne, J. and D. C. Fritts, Stratified shear turbulence: Evolution and statistics, Geophys. Res. Lett., 26, 439–442, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Hill.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hill, R.J., Gibson-Wilde, D.E., Werne, J.A. et al. Turbulence-induced fluctuations in ionization and application to PMSE. Earth Planet Sp 51, 499–513 (1999). https://doi.org/10.1186/BF03353211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353211

Keywords

  • Radar
  • Dissipation Rate
  • Potential Temperature
  • Schmidt Number
  • Radar Cross Section