Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)
- Article
- Open access
- Published:
Turbulence-induced fluctuations in ionization and application to PMSE
Earth, Planets and Space volume 51, pages 499–513 (1999)
Abstract
The temporal evolution of a turbulent layer is calculated in detail by solving the hydrodynamic equations. The turbulence is initiated by a Kelvin-Helmholtz instability. The field of potential-temperature fluctuations serves as a tracer for modeling entrainment of the mixing ratios of ionized constituents hypothesized to be present in the upper polar mesosphere. This entrainment modeling provides the input to a turbulence advection model capable of calculating the spectra and cospectra of ions and electrons. The turbulence advection model is used as a subgrid-scale model and is required because, given present or foreseeable computer capabilities, numerical solutions cannot span the enormous range of spatial scales from the depth of the shear layer to the smallest scales on which the most massive ions diffuse. The power spectrum of electron number-density fluctuations obtained from the turbulence advection model is compared with that measured by a rocket during the STATE (Structure and Atmospheric Turbulence Environment) experiment; agreement is found for a case of massive ions. The radar cross section for Bragg scattering is calculated from the electron number-density power spectrum and is used to calculate the signal-to-noise ratio (S/N) for the Poker Flat 50 MHz radar. The resultant S/N is then compared with the radar measurements obtained during the STATE experiment. These comparisons support the hypothesis that massive ions can cause polar mesosphere summer echoes from turbulent layers. Large-scale morphology of the turbulent layer obtained from rocket and radar measurements is reproduced by the hydrodynamic solution.
References
Andreassen, Ø., P. Ø. Hvidsten, D. C. Fritts, and S. Arendt, Vorticity dynamics in a breaking gravity wave, 1. Initial instability evolution, J. Fluid Mech., 367, 27–46, 1998.
Arendt, S., D. C. Fritts, and Ø. Andreassen, The initial value problem for Kelvin vortex waves, J. Fluid Mech., 344, 181–212, 1997.
Björn, L. G., E. Kopp, U. Herrmann, P. Eberhardt, P. H. G. Dickinson, D. J. Mackinnon, F. Arnold, G. Witt, A. Lundin, and D. B. Jenkins, Heavy ionospheric ions in the formation process of noctilucent clouds, J. Geophys. Res., 90, D5, 7985, 1985.
Cho, J. Y. N., Radar Scattering from the Summer Polar Mesosphere: Theory and Observations, 204 pp., Ph.D. Thesis, Cornell University, Ithaca, New York, 1993.
Cho, J. Y. N. and M. C. Kelley, Polar mesosphere summer radar echoes: observations and current theories, Rev. Geophys., 31, 243–265, 1993.
Cho, J. Y. N. and J. Röttger, An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res., 102, 2001–2020, 1997.
Cho, J. Y. N., T. M. Hall, and M. C. Kelley, On the role of charged aerosols in polar mesosphere summer echoes, J. Geophys. Res., 97, 875–886, 1992.
Cho, J. Y. N., C. M. Alcala, M. C. Kelley, and W. E. Swartz, Further effects of charged aerosols on summer mesosphere radar scatter, J. Atmos. Terr. Phys., 58, 661–672, 1996.
Fritts, D. C., S. A. Smith, B. B. Balsley, and C. R. Philbrick, Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment, J. Geophys. Res., 93, 7015–7025, 1988.
Fritts, D. C., T. L. Palmer, Ø. Andreassen, and I. Lie, Evolution and breakdown of Kelvin-Helmholtz billows in stratified compressible flows, I: Comparison of two- and three-dimensional flows, J. Atmos. Sci., 53, 3173–3191, 1996.
Fritts, D. C., S. Arendt, and Ø. Andreassen, Vorticity dynamics in a breaking internal gravity wave, 2. Vortex interactions and transition to turbulence, J. Fluid Mech., 367, 47–65, 1998.
Havnes, O., J. Trøim, T. Blix, W. Mortensen, L. I. Naesheim, E. Thrane, and T. Tonnesen, First detection of charged dust particles in the Earth’s mesosphere, J. Geophys. Res., 101, 10839–10847, 1996a.
Havnes, O., L. I. Naesheim, T. W. Hartquist, G. E. Morfill, F. Melandso, B. Schleicher, J. Troim, T. Blix, and E. Thrane, Meter-scale variations of the charge carried by mesospheric dust, Planet. Space Sci., 44, 1191–1194, 1996b.
Hill, R. J., Nonneutral and quasi-neutral diffusion of weakly ionized multi-constituent plasma, J. Geophys. Res., 83, 989–998, 1978a.
Hill, R. J., Models of the scalar spectrum for turbulent advection, J. Fluid Mech., 88, 541–562, 1978b.
Hill, R. J. and S. A. Bowhill, Small-scale fluctuations in D-region ionization due to hydrodynamic turbulence, Aeronomy Report No. 75, University of Illinois, Urbana, Illinois, Nov. 1976.
Hill, R. J. and S. A. Bowhill, Transient compressional response of D-region ionization, J. Atmos. Terr. Phys., 39, 333–346, 1977.
Hill, R. J. and K. A. Mitton, Turbulence-induced ionization fluctuations in the lower ionosphere, NOAA Technical Report ERL 454-ETL 68, November 1998 (available from the author or the National Technical Information Service, 5285 Port Royal Road, Springfield, VA, USA).
Hocking, W. K., On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra-I. Theory, J. Atmos. Terr. Phys., 45, 89–102, 1983.
Hocking, W. K., An assessment of the capabilities and limitations of radars in measurements of upper atmosphere turbulence, Adv. Space Res., 17, (11)37–(11)47, 1996.
Inhester, B., J. C. Ulwick, J. Cho, M. C. Kelley, and G. Schmidt, Consistency of rocket and radar electron density observations: Implication about the anisotropy of mesospheric turbulence, J. Atmos. Terr. Phys., 52, 855–873, 1990.
Kelley, M. C. and J. C. Ulwick, Large- and small-scale organization of electrons in the high-latitude mesosphere: implications of the STATE data, J. Geophys. Res., 93, 7001–7008, 1988.
Klaassen, G. P. and W. R. Peltier, The onset of turbulence in finite-amplitude Kelvin-Helmholtz billows, J. Fluid Mech., 227, 1–35, 1985.
Klostermeyer, J., On the formation of electron depletions at the summer polar mesosphere, Geophys. Res. Lett., 23, 335–338, 1996.
Langevin, M. P., Une formule fondamentale de theorie cinetique, Annales de Chimie et de Physique, series 8, 5, 245–288, 1905.
Lübken, F.-J., G. Lehmacher, T. Blix, U.-P. Hoppe, E. Thrane, J. Cho, and W. Swartz, First in-situ observations of the Schmidt number within a PMSE layer, Geophys. Res. Lett., 20, 2311–2314, 1993.
Lübken, F.-J., K.-H. Fricke, and M. Langer, Noctilucent clouds and the thermal structure near the Arctic mesopause in summer, J. Geophys. Res., 101, 9489–9508, 1996.
Lübken, F.-J., M. Rapp, T. Blix, and E. Thrane, Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes, Geophys. Res. Lett., 25, 893–896, 1998.
Lumley, J. L. and H. A. Panofsky, The Structure of Atmospheric Turbulence, 239 pp., Interscience Publishers, New York, 1964.
McDaniel, E. W., Collision Phenomena in Ionized Gases, 775 pp., Wiley Series in Plasma Physics, John Wiley & Sons, Inc., New York, 1964.
Muschinski, A. and C. Wode, First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free troposphere, J. Atmos. Sci., 55, 2893–2906, 1998.
Ottersten, H., Radar backscattering from the turbulent clear atmosphere, Radio Sci., 4, 1251–1255, 1969.
Palmer, T. L., D. C. Fritts, and Ø. Andreassen, Evolution and breakdown of Kelvin-Helmholtz billows in stratified compressible flows, II: Instability structure, evolution, and energetics, J. Atmos. Sci., 53, 3192–3212, 1996.
Pedersen, A., J. Trøim, and J. A. Kane, Rocket measurements showing removal of electrons above the mesopause in summer at high latitude, Planet. Space Sci., 18, 945–947, 1970.
Röttger, J., Middle Atmospheric Studies with the EISCATRadars: Polar Mesosphere Summer Echoes, pp. 369–387, Kluwer Academic Publishers, Netherlands, 1993.
Rottger, J., Polar mesosphere summer echoes: Dynamics and aeronomy of the mesosphere, Adv. Space Res., 14, (9)123–(9)137, 1994.
Royrvik, O. and L. G. Smith, Comparison of mesospheric VHF radar echoes and rocket probe electron number density measurements, J. Geophys. Res., 89, 9014–9022, 1984.
Tennekes, H. and J. L. Lumley, A First Course in Turbulence, 300 pp., MIT Press, Cambridge, Mass., 1972.
Ulwick, J. C., K. D. Baker, M. C. Kelley, B. B. Balsley, and W. L. Ecklund, Comparison of simultaneous MST radar and electron density probe measurements during STATE, J. Geophys. Res., 93, 6989–7000, 1988.
Villars, F. and V. F. Weisskopf, On the scattering of radio waves by turbulent fluctuations of the atmosphere, Proc IRE, 43, 1232–1238, 1955.
Watkins, B. J., C. R. Philbrick, and B. B. Balsley, Turbulence energy dissipation rates and inner scale sizes from rocket and radar data, J. Geophys. Res., 93, 7009–7014, 1988.
Werne, J. and D. C. Fritts, Stratified shear turbulence: Evolution and statistics, Geophys. Res. Lett., 26, 439–442, 1999.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hill, R.J., Gibson-Wilde, D.E., Werne, J.A. et al. Turbulence-induced fluctuations in ionization and application to PMSE. Earth Planet Sp 51, 499–513 (1999). https://doi.org/10.1186/BF03353211
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03353211