Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Seasonal variation of turbulent energy dissipation rates in the polar mesosphere: a comparison of methods

Abstract

During the last two decades many estimates of turbulence strength have been made by a variety of techniques in the mesosphere above northern Norway. We have assimilated many of these results and present them in this study, enabling the reader to note systematic differences. We concentrate on seasonal variation not only in an attempt to smooth out non-representative data, but also to identify the seasonal features themselves. We note both semi-annual and annual variations in turbulent intensity, depending on the height considered. Finally we address the aforementioned systematic differences between the methods and suggest possible causes in terms of each method’s underlying assumptions.

References

  • Baron, M., The EISCAT facility, J. Atmos. Terr. Phys., 46, 469–472, 1984.

    Article  Google Scholar 

  • Blamont, J.-E., Turbulence in atmospheric motions between 90 and 130 km of altitude, Planet. Space Sci., 10, 89–101, 1963.

    Article  Google Scholar 

  • Blix, T.A., In-situ studiesofturbulence and mixing; problems and questions, in Coupling Processes in the Lower and Middle Atmosphere, edited by Thrane et al., pp. 329–344, Kluwer, Dordrecht, The Netherlands, 1993.

    Chapter  Google Scholar 

  • Blix, T. A., E. V. Thrane, and Ø. Andreassen, In Situ Measurements of the fine-scale structure and turbulence in the mesosphere and lower thermosphere by means of electrostatic ion probes, J. Geophys. Res., 95(D5), 5533–5548, 1990.

    Article  Google Scholar 

  • Briggs, B. H., The analysis of spaced sensor records by correlation techniques, Handb. MAP, 13, 166–186, 1984.

    Google Scholar 

  • Collis, P. N., Common program data analysis at EISCAT, in Proceedings of the EISCAT Annual Review Meeting, Skibotn, Norway 2–5 March, 1987, edited by P. N. Collis, 1987.

  • Collis, P. N. and J. Röttger, Mesospheric studies using the EISCAT UHF and VHF radars: a review of principles and experimental results, J. Atmos. Terr. Phys., 52, 569–584, 1990.

    Article  Google Scholar 

  • Fritts, D. C. and T. E. van Zandt, Spectral estimates of gravity wave energy and momentum fluxes, J. Atmos. Sci., 50, 3685–3694, 1993.

    Article  Google Scholar 

  • Fukao, S., M. D. Yamanaka, N. Ao, W. K. Hocking, T. Sato, M. Yamamoto, T. Nakamura, T. Tsuda, and S. Kato, Seasonal variability of vertical eddy diffusivity in the middle atmosphere, 1. Three-year observations by the middle and upper atmosphere radar, J. Geophys. Res., 99, 18,973–18,987, 1994.

    Article  Google Scholar 

  • Hall, C. M., The influence of negative ions on mesospheric turbulence traced by ionisation: implications for radar and in situ experiments, J. Geophys. Res., 102, 439–443, 1997a.

    Article  Google Scholar 

  • Hall, C. M., Kilometer scale kinetic energy perturbations in the mesosphere derived from EISCAT velocity data, Radio Sci., 32, 93–101, 1997b.

    Article  Google Scholar 

  • Hall, C. M., C. E. Meek, and A. H. Manson, Turbulent energy dissipation rates fromthe University of Tromsø/University of Saskachewan MF radar, J. Atmos. Sol.-Terr. Phys., 60, 437–440, 1998.

    Article  Google Scholar 

  • Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.

    Article  Google Scholar 

  • Heisenberg, W., On the theory of statistical and isotropic turbulence, Proc. R. Soc. London, 195, 402–406, 1948.

    Article  Google Scholar 

  • Hill, R. J., Models of the scalar spectrum for turbulent advection, J. Fluid. Mech., 88, 541–562, 1978.

    Article  Google Scholar 

  • Hillert, W., F.-J. Lübken, and G. Lehmacher, Neutral air turbulence during DYANA as measured by the TOTAL instrument, J. Atmos. Terr. Phys., 56, 1835–1852, 1993.

    Article  Google Scholar 

  • Hocking, W. K., On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra—I. Theory, J. Atmos. Terr. Phys., 45, 89–102, 1983.

    Article  Google Scholar 

  • Hocking, W. K., Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review, Radio Sci., 20, 1403–1422, 1985.

    Article  Google Scholar 

  • Hocking, W. K., Two years of continuous measurements of turbulence parameters in the upper mesosphere and lower thermosphere made with a 2-MHz radar, J. Geophys. Res., 93, 2475–2491, 1988.

    Article  Google Scholar 

  • Hocking, W. K., The effects of middle atmosphere turbulence on coupling between atmospheric regions, J. Geomag. Geoelectr, 43, Suppl., 621–636, 1991.

    Article  Google Scholar 

  • Hocking, W. K., On the relationship between the strength of atmospheric radar backscatter and the intensity of atmospheric turbulence, Adv. Space Res., 12, (10)207–(10)213, 1992.

    Google Scholar 

  • Hocking, W. K., An assessment of the capabilities and limitations of radars in measurements of upper atmosphere turbulence, Adv. Space Res., 17, (11)37–(11)47, 1996.

    Article  Google Scholar 

  • Hocking, W. K., Strengths and limitations of MST radar measurements of middle-atmosphere winds, Ann. Geophysicae, 15, 1111–1122, 1997.

    Article  Google Scholar 

  • Hocking, W. K., The dynamical parameters of turbulence theory as they apply to middle atmosphere studies, Earth Planets Space, 51, this issue, 525–541, 1999.

    Article  Google Scholar 

  • Hocking, W. K. and P. K. L. Mu, Upper and middle tropospheric kinetic energy dissipation rates from measurements of C 2n -review of theories, in situ investigations, and experimental studies using the Buckland Park atmospheric radar in Australia, J. Atmos. Sol.-Terr. Phys., 59, 1779–1803, 1997.

    Article  Google Scholar 

  • Hoppe, U.-P., T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, and F.-J. Lübken, Observations in the polar middle atmosphere by rocket-borne Rayleigh lidar: First results, Earth Planets Space, 51, this issue, 815–824, 1999.

    Article  Google Scholar 

  • Kelley, M. C., J. C. Ulwick, J. Röttger, B. Inhester, T. Hall, and T. Blix, Intense turbulence in the polar mesosphere: rocket and radar measurements, J. Atmos. Terr. Phys., 52, 875–892, 1990.

    Article  Google Scholar 

  • Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers, C. R. Acad. Sci. URSS, 30, 301–305, 1941.

    Google Scholar 

  • Lübken, F.-J., Rocket-borne measurements of small scale structures and turbulence in the upper atmosphere, Adv. Space Res., 17, (11)25–(11)35, 1996.

    Google Scholar 

  • Lübken, F.-J., W. Hillert, G. Lehmacher, and U. von Zahn, Experiments revealing small impact of turbulence on the energy budget of the mesosphere and lower thermosphere, J. Geophys. Res., 98 (D11), 20,369–20,384, 1993.

    Article  Google Scholar 

  • Manson, A. H. and C. E. Meek, Small-scale features in the middle atmosphere wind field at Saskatoon, Canada (52°N, 107°W): An analysis of MF radar data with rocket comparisons, J. Atmos. Sci., 44, 3661–3672, 1987.

    Article  Google Scholar 

  • Manson, A. H., C. E. Meek, and J. B. Gregory, Gravity waves of short period (5–90 min) in the lower thermosphere at 52°N (Saskatoon, Canada): 1978/1979, J. Atmos. Terr. Phys., 43, 35–44, 1981.

    Article  Google Scholar 

  • Press, W. H. and G. B. Rybicki, Fast algorithm for spectral analysis of unevenly sampled data, Astrophys. J., 338, 277–280, 1989.

    Article  Google Scholar 

  • Tartarskii, V. I., The Effects of the Turbulent Atmosphere on Wave Propagation, Israel Programme for Scientific Translations, Jerusalem, 1971.

    Google Scholar 

  • Thrane, E. V. and B. Grandal, Observations of fine scale structure in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 43, 179–189, 1981.

    Article  Google Scholar 

  • Thrane, E. V., Ø. Andreassen, T. Blix, B. Grandal, A. Brekke, C. R. Philbrick, F. J. Schmidlin, H. U. Widdel, U. von Zahn, and F.-J. Lübken, Neutral air turbulence in the upper atmosphere observed during the Energy Budget Campaign, J. Atmos. Terr. Phys., 47, 243–264, 1985.

    Article  Google Scholar 

  • Ulwick, J. C., K. D. Baker, M. C. Kelley, B. B. Balsley, and W. L. Ecklund, Comparison of simultaneous MST radar and electron density probe measurements during STATE, J. Geophys. Res., 93, 6989–7000, 1988.

    Article  Google Scholar 

  • Vandepeer, B. G. W. and W. K. Hocking, A comparison of Doppler and spaced antenna radar techniques for the measurement of turbulent energy dissipation rates, Geophys. Res. Lett., 20, 17–20, 1993.

    Article  Google Scholar 

  • Weinstock, J., Vertical turbulent diffusion in a stably stratified fluid, J. Atmos. Sci., 35, 1022–1027, 1978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Hall.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hall, C.M., Hoppe, U.P., Blix, T.A. et al. Seasonal variation of turbulent energy dissipation rates in the polar mesosphere: a comparison of methods. Earth Planet Sp 51, 515–524 (1999). https://doi.org/10.1186/BF03353212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353212

Keywords

  • Radar
  • Gravity Wave
  • Neutral Density
  • Energy Dissipation Rate
  • Middle Atmosphere