Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

The dynamical parameters of turbulence theory as they apply to middle atmosphere studies

Abstract

The study of turbulent heating and diffusion in the middle atmosphere is complicated by some subtle points relating to the application of existing theory. Incorrect interpretation of turbulent spectra can result, leading to errors in estimates of the strengths of turbulence by factors of 5 and more. In this short review, the relevant turbulent spectra and equations are considered, and their applications in middle atmosphere studies are outlined. New developments with regard to some of this theory, and especially new understandings about the dynamical parameters used in some of these applications (often referred to as the “constants” of the equations) are described. Current areas of uncertainty are also considered, both in relation to turbulent energy dissipation as well as diffusion over various scales.

References

  • Barat, J., Some characteristics of clear air turbulence in the middle stratosphere, J. Atmos. Sci., 39, 2553–2564, 1982.

    Article  Google Scholar 

  • Batchelor, G. K., The Theory of Homogeneous Turbulence, 197 pp., Cambridge University Press, New York, 1953.

    Google Scholar 

  • Batchelor, G. K., An Introduction to Fluid Dynamics, 615 pp., Cambridge University Press, Cambridge, New York, 1967.

    Google Scholar 

  • Blix, T. A., In-situ studies of turbulence and mixing; problems and questions, in Coupling Processes in the Lower and Middle Atmosphere, Vol. 387, edited by E. V. Thrane, T. A. Blix and D. C. Fritts, NATO ASI series C, pp. 329-344, Kluwer Academic Publishers, 1993.

  • Blix, T. A., E. V. Thrane, and O. Andreassen, In situ measurements of the fine-scale structure and turbulence in the mesosphere and lower thermosphere by means of electrostatic positive ion probes, J. Geophys. Res., 95, 5533–5548, 1990.

    Article  Google Scholar 

  • Bohne, A. R., Radar Detection of Turbulence in Thunderstorms, 62 pp., Report # AFGL-TR-81-0102 (ADA 108679), Air Force Geophys. Lab., Hanscom Air Force Base, MS, U.S.A., 1981.

    Google Scholar 

  • Bohne, A. R., Radar detection of turbulence in precipitation environments, J. Atmos. Sci., 39, 1819–1837, 1982.

    Article  Google Scholar 

  • Budden, K. G., Effect of electron collisions on the formulas of magnetoionic theory, Radio Sci., 69D, 191–211, 1965.

    Google Scholar 

  • Caughey, S. J., B. A. Crease, D. N. Asimakapoulos, and R. S. Cole, Quan- titative bistatic acoustic sounding of the atmospheric boundary layer, Q. J. R. Meteorol. Soc., 104, 147–161, 1978.

    Article  Google Scholar 

  • Crane, R. K., A review of radar observations of turbulence in the lower stratosphere, Radio Sci., 15, 177–193, 1980.

    Article  Google Scholar 

  • Desaubies, Y. and W. K. Smith, Statistics of Richardson number and instability in oceanic internal waves, J. Phys. Oceanography, 12, 1245–1259, 1982.

    Article  Google Scholar 

  • Dewan, E. M., Turbulent vertical transport due to thin intermittent mixing layers in the stratosphere and other stable fluids, Science, 211, 1041–1042, 1981.

    Article  Google Scholar 

  • Doviak, R. J. and D. S. Zrnic, Doppler Radar and Weather Observations, 458 pp., Academic Press, Orlanda, FL, 1984.

    Google Scholar 

  • Fritts, D. C. and T. J. Dunkerton, Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci., 42, 549–556, 1985.

    Article  Google Scholar 

  • Fukao, S., M. D. Yamanaka, N. Ao, W. K. Hocking, T. Sato, M. Yamamoto, T. Nakamura, T. Tsuda, and S. Kato, Seasonal variability of vertical eddy diffusivity in the middle atmosphere, 1. Three-year observations by the middle and upper atmosphere radar, J. Geophys. Res., 99, 18973–18987, 1994.

    Article  Google Scholar 

  • Gage, K. S., J. L. Green, and T. E. VanZandt, Use of Doppler radar for the measurement of atmospheric turbulence parameters from the intensity of clear air echoes, Radio Sci., 15, 407–416, 1980.

    Article  Google Scholar 

  • Gossard, E. E. and A. S. Frisch, Relationship of the variances of temperature and velocity to atmospheric static stability—application to radar and acoustic sounding, J. Clim. Appl. Meteorol., 26, 1021–1036, 1987.

    Article  Google Scholar 

  • Gossard, E. E., R. B. Chadwick, W. D. Neff, and K. P. Moran, The use of ground-based Doppler radars to measure gradients, fluxes and structure parameters in elevated layers, J. Appl. Meteorol., 21, 211–226, 1982.

    Article  Google Scholar 

  • Gossard, E. E., R. B. Chadwick, T. R. Detman, and J. Gaynor, Capability of surface-based clear-air Doppler radar for monitoring meteorological structure of elevated layers, J. Clim. Appl. Meteorol., 23, 474–485, 1984.

    Article  Google Scholar 

  • Gossard, E. E., J. Gaynor, R. J. Zamora, and W. D. Neff, Finestructure of elevated stable layers observed by sounder and in-situ tower sensors, J. Atmos. Sci., 42, 2156–2169, 1985.

    Article  Google Scholar 

  • Hill, R. J. and S. F. Clifford, Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation, J. Opt. Soc. Am., 68, 892–899, 1978.

    Article  Google Scholar 

  • Hocking, W. K., On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra—I: theory, J. Atmos. Terr. Phys., 45, 89–102, 1983.

    Article  Google Scholar 

  • Hocking, W. K., Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: a review, Radio Sci., 20, 1403–1422, 1985.

    Article  Google Scholar 

  • Hocking, W. K., Observation and measurement of turbulence in the middle atmosphere with a VHF radar, J. Atmos. Terr. Phys., 48, 655–670, 1986.

    Article  Google Scholar 

  • Hocking, W. K., The effects of middle atmosphere turbulence on coupling between atmospheric regions, J. Geomag. Geoelectr., 43, 621–636, 1991.

    Article  Google Scholar 

  • Hocking, W. K., On the relationship between the strength of atmospheric radar backscatter and the intensity of atmospheric turbulence, Adv. Space Res., 12(10), 207–213, 1992.

    Article  Google Scholar 

  • Hocking, W. K., An assessment of the capabilities and limitations of radars in measurements of upper atmosphere turbulence, Adv. Space Res., 17(11), 37–47, 1996a.

    Article  Google Scholar 

  • Hocking, W. K., Small scale dynamics of the upper atmosphere: experimental studies of gravity waves and turbulence, chapter 1.2.2 (invited) in The Upper Atmosphere, edited by W. Dieminger, G. K. Hartmann, and R. Leitinger, pp. 51–96, Springer-Verlag, Berlin, Heidelberg, New York, 1996b.

    Google Scholar 

  • Hocking, W. K. and A. M. Hamza, A Quantitative measure of the degree of anisotropy of turbulence in terms of atmospheric parameters, with particular relevance to radar studies, J. Atmos. Sol.- Terr. Phys., 59, 1011–1020, 1997.

    Article  Google Scholar 

  • Hocking, W. K. and K. L. Mu, Upper and Middle Tropospheric Kinetic Energy Dissipation Rates from Measurements of C 2n —Review of Theories, in-situ Investigations, and Experimental Studies using the Buckland Park Atmospheric Radar in Australia, J. Atmos. Terr. Phys., 59, 1779–1803, 1997.

    Article  Google Scholar 

  • Hocking, W. K. and R. A. Vincent, Comparative observations of D-region HF partial reflections at 2 and 6 MHz, J. Geophys. Res., 87, 7615–7624, 1982.

    Article  Google Scholar 

  • Hocking, W. K. and R. L. Walterscheid, The role of stokes’ diffusion in middle atmospheric transport, NATO (North Atlantic Treaty Organization) publication in Coupling Processes in the Lower and Middle Atmosphere, (Series C: Mathematical and Physical Sciences, Vol. 387), edited by E. V. Thrane, T. A. Blix, and D. C. Fritts, pp. 305–328, Kluwer Academic Publishers, Dordrecht, Boston and London, 1993.

    Chapter  Google Scholar 

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, Turbulence structure in the convective boundary layer, J. Atmos. Sci., 33, 2152–2168, 1976.

    Article  Google Scholar 

  • Labitt, M., Some basic relations concerning the radar measurement of air turbulence, Mass. Inst. of Technol., Lincoln Lab., Work. Pap. 46WP-5001, 1979.

  • Lee, Y., A. R. Paradis, and D. Klingle-Watson, Preliminary Results of the 1983 coordinated aircraft-Doppler weather radar turbulence experiment, volume I, Report # DOT/FAA/PM-86/11 (A197894), 76 pp., Lincoln Lab., MIT, Lexington, Mass., U.S.A., 1988.

    Google Scholar 

  • Lilly, D. K., D. E. Waco, and S. I. Adelfang, Stratospheric mixing estimated from high-altitude turbulence measurements, J. Appl. Meteorol., 13, 488–493, 1974.

    Article  Google Scholar 

  • Lübken, F.-J., Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurments of neutral density fluctuations, J. Geophys. Res., 102, 13441–13456, 1997.

    Article  Google Scholar 

  • Lübken, F.-J., U. Von Zahn, E. V. Thrane, T. Blix, G. A. Kokin, and S. V. Pachomov, In-situ measurements of turbulent energy dissipation rates and eddy diffusion coefficients during MAP/WINE, J. Atmos. Terr. Phys., 49, 763–776, 1987.

    Article  Google Scholar 

  • Lübken, F.-J., W. Hillert, G. Lehmacher, and U. von Zahn, Experiments revealing small impact of turbulence on the energy budget of the mesosphere and lower thermosphere, J. Geophys. Res., 98, 20369–20384, 1993.

    Article  Google Scholar 

  • Lumley, J. L. and H. A. Panofsky, The Structure of Atmospheric Turbulence, 239 pp., John Wiley and Sons, New York, London, Sydney, 1964.

    Google Scholar 

  • McIntyre, M. E., On dynamics and transport near the polar mesopause in summer, J. Geophys. Res., 94, 14617–14628, 1989.

    Article  Google Scholar 

  • Nastrom, G. D., Doppler radar spectral width broadening due to beamwidth and wind shear, Ann. Geophys., 15, 786–796, 1997.

    Article  Google Scholar 

  • Ottersten, H., Atmospheric structure and radar backscattering in clear air, Radio Sci., 4, 1179–1193, 1969.

    Article  Google Scholar 

  • Sen, H. K. and A. A. Wyller, On the generalization of the Appleton-Hartree magnetionic formulas, J. Geophys. Res., 65, 3931–3950, 1960.

    Article  Google Scholar 

  • Strobel, D. F., M. E. Summers, R. M. Bevilacqua, M. T. DeLand, and M. Allen, Vertical constituent transport in the mesosphere, J. Geophys. Res., 92, 6691–6698, 1987.

    Article  Google Scholar 

  • Tatarskii, V. I., Wave Propagation in a Turbulent Medium, 285 pp., McGraw-Hill, New York, 1961.

    Google Scholar 

  • Tatarskii, V. I., The Effects of the Turbulent Atmosphere on Wave Propagation, 472 pp., Keter Press, Jerusalem, 1971.

    Google Scholar 

  • Thrane, E. V., Ø. Andreassen, T. Blix, B. Grandal, A. Brekke, C. R. Philbrick, F. J. Schmidlin, H. U. Widdel, U. Von Zahn, and F.-J. Lübken, Neutral air turbulence in the upper atmosphere observed during the Energy Budget Campaign, J. Atmos. Terr. Phys., 47, 243–264, 1985.

    Article  Google Scholar 

  • Thrane, E. V., T. A. Blix, C. Hall, T. L. Hansen, U. von Zahn, W. Meyer, P. Czechowsky, G. Schmidt, H.-U. Widdel, and A. Neumann, Small scale structure and turbulence in the mesosphere and lower thermosphere at high latitudes in winter, J. Atmos. Terr. Phys., 49, 751–762, 1987.

    Article  Google Scholar 

  • Van Zandt, T. E., J. L. Green, K. S. Gage, and W. L. Clark, Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the Sunset radar with a new theoretical model, Radio Sci., 13, 819–829, 1978.

    Article  Google Scholar 

  • Van Zandt, T. E., K. S. Gage, and J. M. Warnock, An improved model for the calculation of profiles of and in the free atmosphere from background profiles of wind, Temperature and humidity, paper presented at 20th Conference on Radar Meteorology Am. Met. Soc., Boston, Mass., Nov. 30–Dec. 3, 1981.

  • Vinnichenko, N. K., N. Z. Pinus, S. M. Shmater, and G. N. Shur, Turbulence in the Free Atmosphere (translated from Russian, translations editor J. A. Dutton), 263 pp., Consultants Bureau, NY, London, 1973.

    Google Scholar 

  • Walterscheid, R. L. and W. K. Hocking, Stokes diffusion by atmospheric internal gravity waves, J. Atmos. Sci., 48, 2213–2230, 1991.

    Article  Google Scholar 

  • Watkins, B. J., C. R. Philbrick, and B. B. Balsley, Turbulence energy dissipation rates and inner scale sizes from rocket and radar data, J. Geophys. Res., 93, 7009–7014, 1988.

    Article  Google Scholar 

  • Weinstock, J., On the theory of turbulence in the buoyancy subrange of stably stratified flows, J. Atmos. Sci., 35, 634–649, 1978a.

    Article  Google Scholar 

  • Weinstock, J., Vertical turbulent diffusion in a stably stratified fluid, J. Atmos. Sci., 35, 1022–1027, 1978b.

    Article  Google Scholar 

  • Weinstock, J., Using radar to estimate dissipation rates in thin layers of turbulence, Radio Sci., 16, 1401–1406, 1981.

    Article  Google Scholar 

  • Woodman, R. F. and P. K. Rastogi, Evaluation of effective eddy diffusive coefficients using radar observations of turbulence in the stratosphere, Geophys. Res. Letts., 11, 243–246, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. K. Hocking.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hocking, W.K. The dynamical parameters of turbulence theory as they apply to middle atmosphere studies. Earth Planet Sp 51, 525–541 (1999). https://doi.org/10.1186/BF03353213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353213

Keywords

  • Radar
  • Dynamical Parameter
  • Richardson Number
  • Energy Dissipation Rate
  • Middle Atmosphere