Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Gravity wave spectra, directions and wave interactions: Global MLT-MFR network

Abstract

Observations of winds and gravity waves (GW) by MF radars from the Arctic to the Equator are used to provide frequency spectra and spectral variances of horizontal motions, and information on the predominant azimuthal directions of propagation for the waves. The years used are mainly 1993/4; the height layer 76–88 km; and the GW bands 10 100 min. and 1–6 hrs. The high/mid-latitude locations of Tromsø, Saskatoon, London/Urbana, Yamagawa, generally demonstrate similar behaviour: the monthly spectra have slopes near −5/3 in winter months, but smaller (absolute) slopes at higher frequencies (<2 hrs.) in summer. Corresponding to this, the spectral densities (10–100 min.) are larger for conditions of higher mean background windspeed—this is related by means of a new correlation-vector technique to GW propagating anti-parallel to the mean zonal winds, and the closure of the solstitial mesospheric jets. Also consistent with this, the sizes and orientations of perturbation ovals (fitted to the wind variations), demonstrate strong semi-annual-oscillations (SAO), and generally similar monthly and latitudinal directions. This suggests strong control, especially of the high-frequency GW band, by the dominant zonal wind-structures of the mesosphere. In contrast the low-latitude locations of Hawaii and Christmas Island demonstrate uniquely different behaviours, with indications of significant inter-annual variability. The frequency spectra for all months tend to have smaller slopes at higher frequencies. Also the dependence of spectral density in both GW bands, upon background wind speed, is negative rather than positive, and is shown to be generally consistent with GW propagating parallel to the mean-global winds. This is consistent with weaker vertical shears in the zonal winds (76–88 km), and lower GW momentum depositions. The perturbation ovals reveal much weaker SAO, and more variable orientations, consistent with more dependency upon GW sources, and less control by the mean winds of the mesosphere.

References

  • Cervara, M. A. and I. M. Reid, Comparison of simultaneous wind measurements using colocated VHF meteor radar and MF space antenna radar systems, Radio Sci., 30, 1245–1261, 1995.

    Article  Google Scholar 

  • Eckermann, S. D. and C. J. Marks, An idealized ray model of gravity wave-tidal interactions, J. Geophys. Res., 101, 21,195–21,212, 1996.

    Article  Google Scholar 

  • Fritts, D. C., A review of gravity wave saturation processes, effects, and variability in the middle atmosphere, Pure Appl. Geophys., 130, 343–371, 1989.

    Article  Google Scholar 

  • Fritts, D. C. and T. E. VanZandt, Effects of Doppler shifting on the frequency spectra of atmospehric gravity waves, J. Geophys. Res., 92, 9723–9732, 1987.

    Article  Google Scholar 

  • Fritts, D. C. and D.-Y. Wang, Doppler shifting effects on frequency spectra of atmospheric gravity waves, J. Atmos. Sci., 48, 1535–1544, 1991.

    Article  Google Scholar 

  • Gardner, C. S. and M. J. Taylor, Observational limits for lidar, radar, and airglow imager measurements of gravity wave parameters, J. Geophys. Res., 103, 6427–6430, 1998.

    Article  Google Scholar 

  • Gavrilov, N. M., A. H. Manson, and C. E. Meek, Climatological monthly characteristics of middle atmosphere gravity waves (10 min.-10 hrs.) during 1979–1993 at Saskatoon, Ann. Geophysicae, 13, 285–295, 1995.

    Google Scholar 

  • Isler, J. R. and D. C. Fritts, Gravity wave variability and interaction with lower-frequency motions in the mesophere and lower thermosphere over Hawaii, J. Atmos. Sci., 53, 37–48, 1996.

    Article  Google Scholar 

  • Manson, A. H., Gravity wave horizontal and vertical wavelengths: An update of Measurements in the mesopause region (80–100 km), J. Atmos. Sci., 47, 2765–2773, 1990.

    Article  Google Scholar 

  • Manson, A. H. and C. E. Meek, Gravity wave propagation characteristics (60–120 km) as Determined by the Saskatoon MF Radar (Gravnet) system: 1983–85 at 52°N, 107°W, J. Atmos. Sci., 45, 931–946, 1988.

    Article  Google Scholar 

  • Manson, A. H. and C. E. Meek, Characteristics of gravity waves (10 min.-6 hrs.) at Saskatoon (52°N, 107°W): observations by the phase coherent medium frequency radar, J. Geophys. Res., D98, 20,357–20,367, 1993.

    Article  Google Scholar 

  • Manson, A. H., F. Yi, and C. E. Meek, Comparisons between instantaneous wind measurements made at Saskatoon (52°N, 107°W) using the colocated medium frequency radars and Fabry-Perot interferometer instruments: Climatologies (1988–1992) and case studies, J. Geophys. Res., 101 (D23), 29,553–29,563, 1996.

    Article  Google Scholar 

  • Manson, A.H., C. E. Meek, and Q. Zhan, Gravity wave spectra and direction statistics for the mesophere as observed by MF radars in the Canadian Prairies (49°N–52°N) and at Tromsø (69°N), J. Atmos. Sol.-Terr. Phys., 59, 993–1009, 1997.

    Article  Google Scholar 

  • Manson, A. H., C. E. Meek, J. Qian, and C. S. Gardner, Spectra of gravity wave density and wind perturbations observed during Arctic Noctilucent Cloud (ANLC-93) campaign over the Canadian Prairies: Synergistic airborne Na lidar and MF radar observations, J. Geophys. Res., 103, 6455–6465, 1998a.

    Article  Google Scholar 

  • Manson, A. H., C. E. Meek, and G. E. Hall, Correlations of gravity waves and tides in the mesopause over Saskatoon, J. Atmos. Sol.-Terr. Phys., 60, 1089–1107, 1998b.

    Article  Google Scholar 

  • McLandress, C., On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models, J. Atmos. Sol.-Terr. Phys., 60, 1357–1384, 1998.

    Article  Google Scholar 

  • Medvedev, A. S., G. P. Klaassen, and S. R. Beagley, On the role of an anisotropic gravity wave spectrum in maintaining the circulation of the middle atmosphere, Geophys. Res. Lett., 25, 509–512, 1998.

    Article  Google Scholar 

  • Meek, C. E., An efficient method for analyzing ionospheric drifts data, J. Atmos. Terr. Phys., 42, 835–839, 1980.

    Article  Google Scholar 

  • Meek, C. E., I. M. Reid, and A. H. Manson, Observations of mesopheric wind velocities. 2. Cross-sections of power spectral density for 48-8 hours, 8-1 hours, 1 hour-10 min. over 60–110 km for 1981, Radio Sci., 20, 1383–1402, 1985.

    Article  Google Scholar 

  • Meek, C. E., A. H. Manson, M. D. Burrage, G. Garbe, and L. L. Cogger, Comparisons between Canadian prairie MF radars, FPI (green and OH lines) and UARS HRDI systems, Ann. Geophysicae, 15, 1099–1110, 1997.

    Article  Google Scholar 

  • Nakamura, T., T. Tsuda, S. Fukao, S. Kato, A. H. Manson, and C. E. Meek, Comparative observations of short-period gravity waves (10–100 min.) in the mesosphere in 1989 by Saskatoon MF radar (52°N), Canada and the MU radar (35°N), Radio Sci., 28, 729–746, 1993.

    Article  Google Scholar 

  • Nakamura, T., T. Tsuda, S. Fukao, A. H. Manson, C. E. Meek, R. A. Vincent, and I. M. Reid, Mesopheric gravity waves at Saskatoon (52°N), Kyoto (35°N) and Adelaide (35°S), J. Geophys. Res., 101, 7005–7012, 1996.

    Article  Google Scholar 

  • Rastogi, P. K., E. Kudeki, and F. Sürücü, Distortion of gravity wave spectra of horizontal winds measured in atmospheric radar experiments, Radio Sci., 31, 105–118, 1996.

    Article  Google Scholar 

  • Shepherd, T. G., The Canadian MAM project, CMOS Bulletin, 23, 3–10, 1995.

    Google Scholar 

  • Thayaparan, T., W. K. Hocking, and J. MacDougall, Middle atmospheric winds and tides over London, Canada (43°N, 81°W) during 1992–1993, Radio Sci., 30, 1293–1309, 1995.

    Article  Google Scholar 

  • Thorsen, D., S. J. Franke, Climatology of mesopheric gravity wave activity over Urbana, Illinois (40°N, 88°W), J. Geophys. Res., 103, 3767–3780, 1998.

    Article  Google Scholar 

  • Vincent, R. A. and D. C. Fritts, A climatology of gravity wave motions in the mesopause region at Adelaide, Australia, J. Atmos. Sci., 44, 748–760, 1987.

    Article  Google Scholar 

  • Wiens, R. H., D. Y. Wang, R. N. Peterson, and G. G. Shepherd, Statistics of gravity waves seen in O2 nightglow over Bear Lake Observatory, J. Geophys. Res., 102, 7319–7329, 1997.

    Article  Google Scholar 

  • Zhan, Q., A. H. Manson, and C. E. Meek, The impact of gaps and spectral methods on the spectral slope of the middle atmospheric wind, J. Atmos. Terr. Phys., 58, 1329–1336, 1996.

    Article  Google Scholar 

  • Zhong, L., A. H. Manson, L. J. Sonmor, and C. E. Meek, Gravity wave exclusion circles in background flows modulated by the semi-diurnal tide, Ann. Geophysicae, 14, 557–565, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Manson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manson, A.H., Meek, C.E., Hall, C. et al. Gravity wave spectra, directions and wave interactions: Global MLT-MFR network. Earth Planet Sp 51, 543–562 (1999). https://doi.org/10.1186/BF03353214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353214

Keywords

  • Gravity Wave
  • Zonal Wind
  • Middle Atmosphere
  • Canadian Prairie
  • Correlation Vector