Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

QBO effects on the diurnal tide in the upper atmosphere

Abstract

We report on a series of numerical experiments conducted with the global-scale wave model (GSWM) and designed to investigate the effects of the quasi-biennial oscillation (QBO) on the migrating diurnal tide. Our results indicate that the diurnal tidal response in the upper mesosphere and lower thermosphere (MLT) is significantly affected by the QBO in zonal mean zonal winds, but largely insensitive to the QBO in stratospheric ozone. We discuss the variable mean wind results in light of previous analytic attempts to describe the diurnal tide in the presence of mean winds and dissipation. Our calculations do not explain the interannual tidal variations observed by the High Resolution Doppler Interferometer (HRDI) on the Upper Atmosphere Research Satellite (UARS).

References

  • Aso, T., T. Y. Nonoyama, and S. Kato, Numerical simulation of semidiurnal atmospheric tides, J. Geophys. Res., 86, 11,388–11,400, 1981.

    Article  Google Scholar 

  • Batten, E. S., Wind systems in the mesosphere and lower ionosphere, J. Meteorol., 18, 283–291, 1961.

    Article  Google Scholar 

  • Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM, Geophys. Res. Lett., 22, 2641–2644, 1995.

    Article  Google Scholar 

  • Burrage, M. D., R. A. Vincent, H. G. Mayr, W. R. Skinner, N. F. Arnold, and P. B. Hays, Long-term variability in the equatorial mesosphere and lower thermosphere zonal wind, J. Geophys. Res., 101, 12,847–12,854, 1996.

    Article  Google Scholar 

  • Ekanayake, E. M. P., T. Aso, and S. Miyahara, Background wind effect on propagation of nonmigrating diurnal tides in the middle atmosphere, J. Atmos. Sol.-Terr. Phys., 59, 401–429, 1997.

    Article  Google Scholar 

  • Forbes, J. M., Atmospheric tides, 1, Model description and results for the solar diurnal component, J. Geophys. Res., 87, 5222–5240, 1982.

    Article  Google Scholar 

  • Forbes, J. M. and M. E. Hagan, Diurnal propagating tide in the presence of mean winds and dissipation: A numerical investigation, Planet. Space Sci., 36, 579–590, 1988.

    Article  Google Scholar 

  • Forbes, J. M. and F. Vial, Monthly simulation of the solar semidiurnal tide in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 51, 649–661, 1989.

    Article  Google Scholar 

  • Forbes, J. M. and R. A. Vincent, Effects of mean winds and dissipation on the diurnal propagating tide: An analytic approach, Planet. Space Sci., 37, 197–209, 1989.

    Article  Google Scholar 

  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, Climatology of the semiannual oscillation of the tropical middle atmosphere, J. Geophys. Res., 102, 26,019–26,032, 1997.

    Article  Google Scholar 

  • Geller, M. A., B. V. Khattatov, V. A. Yudin, and M. E. Hagan, Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements, Ann. Geophys., 15, 1198–1204, 1997.

    Article  Google Scholar 

  • Groves, G. V., Hough components of water vapor heating, J. Atmos. Terr. Phys., 44, 281–290, 1982.

    Article  Google Scholar 

  • Groves, G. V., A global reference atmosphere from 18 to 80 km, AFGL Report TR-85-0129, 1985.

  • Groves, G. V., Final scientific report, AFOSR Report 84-0045, 1987.

  • Hagan, M. E., Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere, J. Geophys. Res., 101, 21,213–21,222, 1996.

    Article  Google Scholar 

  • Hagan, M. E., F. Vial, and J. M. Forbes, Evidence of variability in upward propagating semidiurnal tides due to effects of QBO in the lower atmosphere, J. Atmos. Terr. Phys., 54, 1465–1474, 1992.

    Article  Google Scholar 

  • Hagan, M. E., J. M. Forbes, and F. Vial, On modeling migrating solar tides, Geophys. Res. Lett., 22, 893–896, 1995.

    Article  Google Scholar 

  • Hagan, M. E., M. D. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813–6828, 1999.

    Article  Google Scholar 

  • Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.

    Article  Google Scholar 

  • Hines, C. O., The upper atmosphere in motion, in Geophys. Mono., No. 18, 1027 pp., American Geophysical Union, Washington, DC, 1974.

    Google Scholar 

  • Hines, C. O., Latitudinal variation of tidal dissipation and upward propagation, Planet. Space Sci., 37, 669–683, 1989.

    Article  Google Scholar 

  • Kantor, A. J., and A. E. Cole, Zonal and meridional winds to 120 kilometers, J. Geophys. Res., 69, 5131–5140, 1964.

    Article  Google Scholar 

  • Lindzen, R. S., Equatorial planetary waves in shear: Part II, J. Atmos. Sci., 29, 1452–1463, 1972.

    Article  Google Scholar 

  • Lindzen, R. S. and S. S. Hong, Effects of mean winds and horizontal temperature gradients on solar and lunar semidiurnal tides in the atmosphere, J. Atmos. Sci., 31, 1421–1466, 1974.

    Article  Google Scholar 

  • Mayr, H. G., J. G. Mengel, C. O. Hines, K. L. Chan, N. F. Arnold, C. A. Reddy, and H. S. Porter, The gravity wave Doppler spread theory applied in a numerical spectral model of the middle atmosphere, 2, Equatorial oscillations, J. Geophys. Res., 102, 26,093–26,105, 1997.

    Article  Google Scholar 

  • Meyer, C. K., Gravity wave interactions with the diurnal propagating tide, J. Geophys. Res., in press, 1999.

  • Murgatroyd, R. J., Winds in the mesosphere and lower thermosphere, Proc. Roy. Soc. London, A288, 575–589, 1965.

    Article  Google Scholar 

  • Murphy, C., Seasonal variations of ionospheric wind over Barbados, J. Geophys. Res., 74, 339–367, 1969.

    Article  Google Scholar 

  • Portnyagin, Yu. I. and T. V. Solov’eva, An empirical model of the meridional wind in the mesopause-lower thermosphere, Part 1, A mean monthly empirical model, Russian J. Met. and Hydr., 10, 28–35, 1992a.

    Google Scholar 

  • Portnyagin, Yu. I. and T. V. Solov’eva, An empirical model of the meridional wind in the mesopause/lower thermosphere, Part 2, Height-latitude features of basic components of meridional wind seasonal variations, Russian J. Met. and Hydr., 11, 29–36, 1992b.

    Google Scholar 

  • Randel, W. J., Global atmospheric circulation statistics, 1000-1 mb, National Center for Atmospheric Research Technical Note 366, 1992.

  • Randel, W. J. and F. Wu, Insolation of ozone QBO in SAGE II data by singular-value decomposition, J. Atmos. Sci., 53, 2546–2559, 1996.

    Article  Google Scholar 

  • Randel, W. J., F. Wu, J. M. Russell, III A. Roche, and J. Waters, Seasonal cycles and QBO variations in stratospheric CH4and H2O observed in UARS HALOE data, J. Atmos. Sci., 55, 163–185, 1998.

    Article  Google Scholar 

  • Richmond, A. D., Energy relations of atmospheric tides and their significance to approximate methods of solutions of tides with dissipative forces, J. Atmos. Sci., 32, 980–987, 1975.

    Article  Google Scholar 

  • Sassi, F. and R. R. Garcia, A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves, J. Atmos. Sci., 51, 3167–3182, 1994.

    Article  Google Scholar 

  • Strobel, D. F., Parameterization of the atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation, J. Geophys. Res., 83, 6225–6230, 1978.

    Article  Google Scholar 

  • Vial, F., Numerical simulations of atmospheric tides, J. Geophys. Res., 91, 8955–8969, 1986.

    Article  Google Scholar 

  • Vincent, R. A., S. Kovalam, D. C. Fritts, and J. R. Isler, Long-term MF radar observations of solar tides in the low-latitude mesosphere: Interannual variability and comparisons with the GSWM, J. Geophys. Res., 103, 8667–8683, 1998.

    Article  Google Scholar 

  • Walterscheid, R. J., J. G. de Vore, and S. V. Venkateswaran, Influence of mean zonal motion and meridional temperature gradients on the solar semidiurnal tide: A revised spectral study with improved heating rates, J. Atmos. Sci., 37, 455–470, 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Hagan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hagan, M.E., Burrage, M.D., Forbes, J.M. et al. QBO effects on the diurnal tide in the upper atmosphere. Earth Planet Sp 51, 571–578 (1999). https://doi.org/10.1186/BF03353216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353216

Keywords

  • Ozone
  • Zonal Wind
  • Diurnal Tide
  • Semidiurnal Tide
  • Background Wind