Skip to main content

Advertisement

Middle atmosphere effects of the quasi-two-day wave determined from a General Circulation Model

Abstract

A set of numerical experiments have been conducted using the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (NCAR TIME-GCM) to understand the effects of the quasi-two-day wave (QTDW) on the middle atmosphere horizontal wind and temperature fields. A zonal wavenumber three perturbation with a period of 48 hours and a latitudinal structure identical to the (3, 0) Rossby-gravity mode has been included at the lower-boundary of the model. A response in the middle atmosphere horizontal wind fields is observed with a structure qualitatively similar to observations and other model results. There is also some evidence to suggest an increase in the lower-thermosphere QTDW response due to the interaction with gravity waves. Changes are observed in the zonal mean wind and temperature fields that are clearly related to the QTDW, however it is unclear if these changes are the direct result of wave driving due to the QTDW or are from another source. Evidence for nonlinear interactions between the QTDW and the migrating tides is presented. This includes significant (40–50%) decreases in the amplitude of the migrating tides when the QTDW is present and the generation of wave components which can be tracked back to an interaction between the QTDW and the migrating tides. Clear evidence for the existence of a westward propagating zonal wavenumber six nonmigrating diurnal tidal component which results from the nonlinear interaction between the QTDW and the migrating tides is also presented.

References

  1. Andrews, D. G., J. R. Holton, and C. B. Leovy, Middle Atmosphere Dynamics, 489 pp., Orlando, FL, Academic Press, 1987.

  2. Avery, S. K., R. A. Vincent, A. Phillips, A. H. Manson, and G. J. Fraser, High-latitude tidal behavior in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 51(7/8), 595–608, 1989.

  3. Boville, B. A., Middle atmosphere version of ccm2 (maccm2): Annual cycle and interannual variability, J. Geopys. Res., 100(D5), 9017–9039, 1995.

  4. Burks, D. and C. Leovy, Planetary waves near the mesospheric easterly jet, Geophys. Res. Lett., 13(3), 193–196, 1986.

  5. Charney, J. G. and P. G. Drazin, Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66(1), 83–109, 1961.

  6. Clark, R. R., Meteor wind measurements at Durham, New Hampshire (43°N, 71°W), J. Atmos. Sci., 32, 1689–1693, 1975.

  7. Clark, R. R., The quasi 2-day wave at Durham (43°N): Solar magnetic effects, J. Atmos. Terr. Phys., 51, 617–622, 1989.

  8. Clark, R. R. and J. S. Bergin, Bispectral analysis of mesosphere winds, J. Atmos. Terr. Phys., 59(6), 629–639, 1997.

  9. Clark, R. R. and J. E. Salah, Propagation of the solar semidiurnal tide in the mesosphere and lower-thermosphere at midlatitudes, J. Geophys. Res., 96, 1129–1133, 1991.

  10. Clark, R. R., A. C. Current, A. H. Manson, C. E. Meek, S. K. Avery, S. E. Palo, and T. Aso, Hemispheric properties of the two-day wave from mesosphere-lower-thermosphere radar observations, J. Atmos. Terr. Phys., 56(10), 1279–1288, 1994.

  11. Coy, L., A possible 2-day oscillation near the tropical stratopause, J. Atmos. Sci., 36, 1615–1618, 1979.

  12. Craig, R. L. and W. G. Elford, Observations of the quasi 2-day wave near 90 km altitude at Adelaide (35°S), J. Atmos. Terr. Phys., 43, 1051–1056, 1981.

  13. Craig, R. L., R. A. Vincent, G. J. Fraser, and M. J. Smith, The quasi 2-day wave in the southern hemisphere mesosphere, Nature, 287, 319–320, 1980.

  14. Dunkerton, T. J., Theory of the mesopause semiannual oscillation, J. Atmos. Sci., 39(12), 2681–2690, 1982.

  15. Forbes, J. M., M. E. Hagan, S. Miyahara, F. Vial, A. H. Manson, C. E. Meek, and Y. I. Portnyagin, Quasi 16-day oscillation in the mesosphere and lower thermosphere, J. Geophys. Res., 100(D5), 9149–9163, 1995.

  16. Fritts, D. C. and J. R. Isler, Mean motions and tidal and two-day structure and variability in the mesosphere and lower thermosphere over Hawaii, J. Atmos. Sci., 51(14), 2145–2164, 1994.

  17. Fritts, D. C., J. R. Isler, R. S. Lieberman, M. D. Burrage, D. R. Marsh, T. Nakamura, T. Tsuda, R. A. Vincent, and I. M. Reid, Two-day wave structure and mean flow interactions observed by radar and High Resolution Doppler Imager, J. Geophys. Res., 104, 3953–3969, 1999.

  18. Geller, M., V. A. Yudin, B. V. Khattatov, and M. E. Hagan, Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements, Ann. Geophys., 15(9), 1198–1204, 1997.

  19. Glass, M., J. L. Fellous, M. Massebeuf, A. Spizzichino, I. A. Lysenko, and Y. I. Portniagin, Comparison and interpretation of the results of simultaneous wind measurements in the lower thermosphere at Garchy (France) and Obninsk (U.S.S.R.) by meteor radar technique, J. Atmos. Terr. Phys., 37, 1077–1087, 1975.

  20. Hagan, M. E., Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere, J. Geophys. Res., 101, 21,213–21,222, 1996.

  21. Hagan, M. E., J. M. Forbes, and F. Vial, Numerical investigation of the propagation of the quasi-two-day wave into the lower thermosphere, J. Geophys. Res., 98, 23,193–23,205, 1993.

  22. Hagan, M. E., J. M. Forbes, and F. Vial, On modeling the migrating solar tides, Geophys. Res. Lett., 22(8), 893–896, 1995.

  23. Hagan, M. E., J. M. Forbes, and C. McLandress, Diurnal tidal variability in the upper mesosphere and lower thermosphere, Ann. Geophys., 15(9), 1176–1186, 1997.

  24. Hagan, M. E., M. D. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813–6827, 1999.

  25. Harris, T. J., A long-term study of the quasi 2-day wave in the middle atmosphere, J. Atmos. Terr. Phys., 56(5), 569–579, 1994.

  26. Harris, T. J. and R. A. Vincent, The quasi-2-day wave observed in the equatorial middle atmosphere, J. Geophys. Res., 98, 10,481–10,490, 1993.

  27. Hays, P. B., V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, High-resolution Doppler imager on the Upper Atmosphere Research Satellite, J. Geophys. Res., 98, 10,713–10,723, 1993.

  28. Hedin, A. E., Extensions of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96(A2), 1159–1172, 1991.

  29. Hirota, I., Equatorial waves in the upper stratosphere and mesosphere in relation to the semiannual oscillation of the zonal wind, J. Atmos. Sci., 35(4), 714–722, 1978.

  30. Hunt, B. G., The 2-day wave in the middle atmosphere as simulated in a general circulation model extending from the surface to 100 km, J. Atmos. Terr. Phys., 43(11), 1143–1154, 1981.

  31. Kal’chanko, B. V. and S. V. Bulgakov, Study of periodic components of wind velocity in the lower thermosphere above the equator, Geomagn. Aeron., 13, 955–956, 1973.

  32. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, The national center for atmospheric research community climate model: CCM3, J. Climate, 11, 1131–1149, 1998.

  33. Kim, Y. C. and E. J. Powers, Digital bispectral analysis and its applications to nonlinear wave interactions, IEEE Trans. Plasma Sci., 7(2), 120–131, 1979.

  34. Lieberman, R. S., Eliassen-palm fluxes of the two-day wave, J. Atmos. Sci., 1999 (in press).

  35. Manson, A. H., C. E. Meek, J. B. Gregory, and D. K. Chakrabarty, Fluctuations in tidal (24-12 h) characteristics and oscillations (5 h-5 d) in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1979–1981, Planet. Space Sci., 30, 1283, 1982.

  36. Manson, A. H., C. E. Meek, H. Teitelbaum, F. Vial, R. Schminder, D. Kürschner, M. J. Smith, G. J. Fraser, and R. R. Clark, Climatologies of semi-diurnal and diurnal tides in the middle atmosphere (70–110 km) at middle latitudes (40–55°), J. Atmos. Terr. Phys., 51, 579–593, 1989.

  37. Manson, A. H., C. E. Meek, R. A. Vincent, R. L. Craig, A. Phillips, G. J. Fraser, M. J. Smith, J. L. Fellous, M. Massebeuf, E. L. Flemming, and S. Chandra, Comparison between reference atmosphere winds and radar winds from selected locations, Adv. Space Res., 10(12), 233–244, 1990.

  38. McLandress, C., Seasonal variability of the diurnal tide: Results from the Canadian middle atmosphere general circulation model, J. Geophys. Res., 102, 29,747–29,764, 1997.

  39. McLandress, C., C. Y. Rochon, G. G. Shepherd, B. H. Solheim, G. Thullier, and F. Vial, The meridional wind component of the thermospheric tide observed by WINDII on UARS, Geophys. Res. Lett., 21, 2417–2420, 1994.

  40. McLandress, C., G. G. Shepherd, and B. H. Solheim, Combined mesosphere/thermosphere winds using WINDII and HRDI data from the Upper Atmosphere Research Satellite, J. Geophys. Res., 101, 10,441–10,453, 1996.

  41. Meek, C. E., A. H. Manson, S. J. Franke, W. Singer, P. Hoffman, R. R. Clark, T. Tusda, T. Nakamura, M. Tsutsumi, M. Hagan, D. C. Fritts, J. Isler, and Y. I. Portnyagin, Global study of northern hemisphere quasi-2-day wave events in recent summers near 90 km altitude, J. Atmos. Terr. Phys., 58(13), 1401–1411, 1996.

  42. Meyer, C. K., Gravity wave—tidal and gravity wave—planetary wave interactions in the mesosphere and lower thermosphere, Ph.D. thesis, Univ. of Colo., Boulder, 1994.

  43. Muller, H. G., Long-period meteor wind oscillations, Phil. Trans. R. Soc. London Ser A, 271, 585–598, 1972.

  44. Norton, W. A. and J. Thuburn, The two-day wave in a middle atmosphere gcm, Geophys. Res. Lett., 23, 2113–2116, 1996.

  45. Norton, W. A. and J. Thuburn, The mesosphere in the extended UGAMP GCM, in Gravity Wave Processes and Their Parameterizations in Global Climate Models, edited by K. Hamilton, pp. 383–401, Springer Verlag, 1997.

  46. Palo, S. E. and S. K. Avery, Mean winds and the semiannual oscillation in the mesosphere and lower thermosphere at Christmas Island, J. Geophys. Res., 98, 20,385–20,400, 1993.

  47. Palo, S. E. and S. K. Avery, Observations of the meridional quasi two-day wave in the mesosphere and lower thermosphere at Christmas Island, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, edited by R. M. Johnson and T. L. Killeen, pp. 101–110, American Geophysical Union, Geophysical Monograph 87, 1995.

  48. Palo, S. E. and S. K. Avery, Observations of the quasi-two-day wave in the middle and lower atmosphere over Christmas Island, J. Geophys. Res., 101 (D8), 12,833–12,846, 1996.

  49. Palo, S. E., M. E. Hagan, C. E. Meek, R. A. Vincent, M. D. Burrage, C. McLandress, S. J. Franke, W. Ward, R. R. Clark, P. Hoffman, R. Johnson, D. Kuerschner, A. H. Manson, D. Murphy, T. Nakamura, Y. I. Portnyagin, J. E. Salah, R. Schminder, W. Singer, T. Tsuda, T. S. Virdi, and Q. Zhou, An intercomparison between the GSWM, UARS, and ground based radar observations: A case-study in January 1993, Ann. Geophys., 15, 1123–1141, 1997.

  50. Palo, S. E., R. G. Roble, and M. E. Hagan, Time-gcm results for the quasi-two-day wave, Geophys. Res. Lett., 25, 3783–3786, 1998.

  51. Pfister, L., Baroclinic instability of easterly jets with applications to the summer mesosphere, J. Atmos. Sci., 42(4), 313–330, 1985.

  52. Plumb, R. A., Baroclinic instability of the summer mesosphere: A mechanism for the quasi-two-day wave?, J. Atmos. Sci., 40, 262–270, 1983.

  53. Plumb, R. A., R. A. Vincent, and R. L. Craig, The quasi-2-day wave event of January 1994 and its impact on the mean mesospheric circulation, J. Atmos. Sci., 44, 3030–3036, 1987.

  54. Randel, W. J., Observations of the 2-day wave in NMC stratospheric analysis, J. Atmos. Sci., 51(2), 306–313, 1994.

  55. Roble, R. G. and E. C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30–500 km), Geophys. Res. Lett., 21, 417–420, 1994.

  56. Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson, A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325–1328, 1988.

  57. Rodgers, C. D. and A. J. Prata, Evidence for a traveling two-day wave in the middle atmosphere, J. Geophys. Res., 86, 9661–9664, 1981.

  58. Rüster, R., VHF radar observations in the summer polar mesosphere indicating nonlinear interaction, Adv. Space Res., 12(10), 85–88, 1992.

  59. Salby, M. L., Rossby normal modes in nonuniform background configurations I, Simple fields, J. Atmos. Sci., 38, 1803–1826, 1981a.

  60. Salby, M. L., Rossby normal modes in nonuniform background configurations II, Equinox and solstice conditions, J. Atmos. Sci., 38, 1827–1840, 1981b.

  61. Salby, M. L., Sampling theory for asynoptic satellite observations. Part I: Space-time spectra, resolution and aliasing, J. Atmos. Sci., 39, 2577–2600, 1982.

  62. Salby, M. L. and R. G. Roper, Long-period oscillations in the meteor region, J. Atmos. Sci., 37, 237–244, 1980.

  63. Teitelbaum, H. and F. Vial, On tidal variability induced by nonlinear interaction with planetary waves, J. Geophys. Res., 96, 14,169–14,178, 1991.

  64. Thayaparan, T., W. K. Hocking, and J. MacDougal, Amplitude, phase and period variations of the quasi 2-day wave in the mesosphere and lower thermosphere over London Ontario (43°N, 81°W), during 1993 and 1994, J. Geophys. Res., 102, 9461–9478, 1997a.

  65. Thayaparan, T., W. K. Hocking, J. MacDougal, A. H. Manson, and C. E. Meek, Simultaneous observations of the 2-day wave at London Ontario (43°N, 81°W) and Saskatoon (52°N, 107°W) near 91 km altitude during the two years 1993 and 1994, Ann. Geophys., 15, 1324–1339, 1997b.

  66. Tsuda, T., S. Kato, and R. A. Vinent, Long period wind oscillations observed by the Kyoto meteor radar and comparisons of the quasi-2-day wave with Adelaide HF radar observations, J. Atmos. Terr. Phys., 50, 225–230, 1988.

  67. Vincent, R. A., T. Tsuda, and S. Kato, Asymmetries in mesospheric tidal structure, J. Atmos. Terr. Phys., 51, 663–671, 1989.

  68. Walterscheid, R. and R. Vincent, Tidal generation of the phase-locked 2-day wave in the southern hemisphere summer by wave-wave interactions, J. Geophys. Res., 101, 26,567–26,576, 1996.

  69. Ward, W. E., D. Y. Wang, B. H. Solheim, and G. G. Shepherd, Observations ofthe two-day wave in WINDII data during January, 1993, Geophys. Res. Lett., 23, 2923–2926, 1996.

  70. Wu, D. L., P. B. Hays, W. R. Skinner, A. R. Marshall, M. D. Burrage, R. S. Lieberman, and D. A. Ortland, Observations ofthe quasi 2-day wave from the high resolution Doppler imager on UARS, Geophys. Res. Lett., 20(24), 2853–2856, 1993.

  71. Wu, D. L., P. B. Hays, and W. R. Skinner, A least squares method for spectral analysis of space-time series, J. Atmos. Sci., 52(20), 3501–3511, 1995.

  72. Wu, D. L., E. F. Fishbein, W. G. Reid, and J. W. Waters, Excitation and evolution ofthe quasi-2-day wave observed in UARS/MLS temperature measurements, J. Atmos. Sci., 53(5), 728–738, 1996.

  73. Yudin, V. A., B. V. Khattatov, M. A. Geller, D. A. Ortland, C. McLandress, and G. G. Shepherd, Thermal tides and studies to tune the mechanistic tidal model using UARS observations, Ann. Geophys., 15(9), 1205–1220, 1997.

  74. Zhou, Q. H., M. P. Sulzer, and C. A. Tepley, Ananalysisoftidal andplanetary waves in the neutral winds and temperature observed at the E-region, J. Geophys. Res., 102 (A6), 11,491–11,505, 1997.

Download references

Author information

Correspondence to Scott E. Palo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • Gravity Wave
  • Zonal Wind
  • Meridional Wind
  • Planetary Wave
  • Middle Atmosphere