Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Simulation of planetary waves and their influence on the zonally averaged circulation in the middle atmosphere

Abstract

A linearized numerical model is used to simulate the propagation of stationary planetary waves through the stratosphere and mesosphere into the lower thermosphere. Wave forcing at the lower boundary has been specified by the perturbation of the geopotential height for January. The dependence of planetary wave structure on the zonally averaged wind is investigated through the analysis of results of simulation with different background wind distributions. The global model of stationary planetary waves has been modified to simulate traveling planetary waves, and the spectrum of resonant planetary modes has been obtained by forcing the model with a periodic perturbation of the vertical velocity near the surface. Wave-activity density, Eliassen-Palm flux, and its divergence are used as a diagnostics of wave propagation and wave-mean flow interaction. It is found that planetary waves can provide substantial acceleration of the mean flow which is comparable to that one associated with gravity wave and atmospheric tide breaking and/or saturation. Results of numerical simulation are compared with the climatological model of stationary planetary waves in the stratosphere and with the preliminary results of wind observations using WINDII instrument on the UARS.

References

  • Andrews, D. G., Wave—mean flow interaction in the middle atmosphere, Adv. Geophys., 28A, 244–275, 1985.

    Google Scholar 

  • Andrews, D. G., On the interpretation of the Eliassen-Palm flux divergence, Q. J. R. Meteorol. Soc., 113, 323–338, 1987.

    Article  Google Scholar 

  • Andrews, D. G. and M. E. McIntyre, Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the zonal acceleration, J. Atmos. Sci., 33, 2031–2053, 1976.

    Article  Google Scholar 

  • Andrews, D. G. and M. E. McIntyre, Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flowsin compressible atmosphere, J. Atmos. Sci., 35, 175–185, 1978.

    Article  Google Scholar 

  • Barnett, J. J. and M. Corney, Planetary waves. Climatological distribution, Handbook for MAP, 16, 86–137, 1985.

    Google Scholar 

  • Boyd, J. P., The noninteraction of waves with the zonally averaged flow on a spherical Earth and the interrelationships of energy, heat and momentum, J. Atmos. Sci., 33, 2285–2291, 1976.

    Article  Google Scholar 

  • Chandra, S., E. L. Fleming, M. R. Schoeberl, and J. J. Barnett, Monthly mean global climatology of temperature, wind, geopotential height and pressure for 0–120 km, Adv. Space Res., 10, 2–12, 1990.

    Article  Google Scholar 

  • Forbes, J. M., M. E. Hagan, S. Miyahara, F. Vial, A. H. Manson, C. E. Meek, and Yu. I. Portnyagin, Quasi 16-day oscillation in the mesosphere and lower thermosphere, J. Geophys. Res., 100, 9149–9163, 1995.

    Article  Google Scholar 

  • Hagan, M. E., J. M. Forbes, and F. Vial, Numerical investigation of the propagation of the quasi-two-day wave into the lower thermosphere, J. Geophys. Res., 98, 23193–23205, 1993.

    Article  Google Scholar 

  • Hagan, M. E., J. M. Forbes, and F. Vial, On modelling migrating solar tides, Geophys. Res. Lett., 22, 893–896, 1995.

    Article  Google Scholar 

  • Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.

    Article  Google Scholar 

  • Hedin, A. E., M. A. Biondi, R. G. Burnside, G. Hernandez, M. Johnson, T. L. Killen, C. Mazaudier, J. W. Meriwether, J. E. Salah, R. J. Sica, R. W. Smith, N. W. Spencer, V. B. Wikwar, and T. S. Virdi, Revised global model of thermosphere winds using satellite and ground-based observations, J. Geophys. Res., 96, 7657–7688, 1991.

    Article  Google Scholar 

  • Hedin, A. E., E. L. Fleming, A. H. Manson, F. G. Schmidlin, S. K. Avery, R. R. Clark, S. J. Franke, G. J. Franser, T. Tsuda, F. Vial, and R. A. Vincent, Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Terr. Phys., 58, 1421–1447, 1996.

    Article  Google Scholar 

  • Kirushov, B. M., Meridional structure of the stationary planetary waves in the middle atmosphere, Trudy Tsent. Aerol. Obs., U.S.S.R., 167, 11–15, 1988 (in Russian).

    Google Scholar 

  • Kockarts, G., Nitric oxide cooling in the terrestrial thermosphere, Geophys. Res. Lett., 7, 137–140, 1980.

    Article  Google Scholar 

  • Lieberman, R. S. and D. Reggin, HRDI observations of Kelvin waves in the equatorial mesosphere and lower thermosphere, J. Geophys. Res., 102, 26117–26130, 1997.

    Article  Google Scholar 

  • Lieberman, R. S., M. D. Burrage, D. A. Gell, P. H. Hays, A. R. Marshall, D. A. Ortland, W. R. Skinner, D. Wu, R. A. Vincent, and S. J. Franke, Zonal mean winds in the equatorial mesosphere and lower thermosphere observed by the High Resolution Doppler Imager, Geophys. Res. Lett., 20, 2849–2852, 1993.

    Article  Google Scholar 

  • Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.

    Article  Google Scholar 

  • Lindzen, R. S. and D. Blake, Lamb waves in the presence of realistic distribution of temperature and dissipation, J. Geophys. Res., 77, 2166–2176, 1972.

    Article  Google Scholar 

  • Longuet-Higgins, M. S., The eigenfunctions of Laplace’s tidal equation over a sphere, Phil. Trans. R. Soc. London, 262, 511–607, 1968.

    Article  Google Scholar 

  • Pogoreltsev, A. I., Simulation of the influence of stationary planetary waves on the zonally averaged circulation of the mesosphere/lower thermosphere region, J. Atmos. Terr. Phys., 58, 901–909, 1996.

    Article  Google Scholar 

  • Pogoreltsev, A. I. and S. A. Sukhanova, Simulation of the global structure of stationary planetary waves in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 55, 33–40, 1993.

    Article  Google Scholar 

  • Salby, M. L., Global-scale disturbances and dynamic similarity, J. Atmos. Sci., 37, 473–478, 1980.

    Article  Google Scholar 

  • Salby, M. L., Rossby normal modes in nonuniform background configurations. Part II. Equinox and Solstice conditions, J. Atmos. Sci., 38, 1827–1840, 1981a.

    Article  Google Scholar 

  • Salby, M. L., The 2-day wave in the middle atmosphere: observations and theory, J. Geophys. Res., 86, 9654–9660, 1981b.

    Article  Google Scholar 

  • Schoeberl, M. R. and R. Clark, Resonant planetary waves in a spherical atmosphere, J. Atmos. Sci., 37, 20–28, 1980.

    Article  Google Scholar 

  • Shepherd, G. G., G. Thuillier, B. H. Solheim, S. Chandra, L. L. Cogger, M. L. Duboin, W. F. J. Evans, R. L. Gattinger, W. A. Gault, M. Herse, A. Hauchecorne, C. Lathuilliere, E. J. Llewellyn, R. P. Lowe, H. Teitelbaum, and F. Vial, Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS, Geophys. Res. Lett., 20, 1303–1306, 1993.

    Article  Google Scholar 

  • Smith, A. K., Wave transience and wave mean flow interaction caused by the interference of stationary and traveling waves, J. Atmos. Sci., 42, 529–535, 1985.

    Article  Google Scholar 

  • Smith, A. K., Stationary planetary waves in upper mesospheric winds, J. Atmos. Sci., 54, 2129–2145, 1997.

    Article  Google Scholar 

  • Wang, D. Y., C. McLandress, E. L. Fleming, W. E. Ward, B. Solheim, and G. G. Shepherd, Empirical model of 90–120 km horizontal winds from wind-imaging interferometer green line measurements in 1992–1993, J. Geophys. Res., 102, 6729–6745, 1997.

    Article  Google Scholar 

  • Ward, W. E., D. Y. Wang, B. H. Solheim, and G. G. Shepherd, Observations of the two-day wave in WINDII data during January, 1993, Geophys. Res. Lett., 23, 2923–2926, 1996.

    Article  Google Scholar 

  • Zhu, X., Radiative damping revisited: Parameterization of damping rate in the middle atmosphere, J. Atmos. Sci., 50, 3008–3021, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Pogoreltsev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pogoreltsev, A. Simulation of planetary waves and their influence on the zonally averaged circulation in the middle atmosphere. Earth Planet Sp 51, 773–784 (1999). https://doi.org/10.1186/BF03353236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353236

Keywords

  • Zonal Wind
  • Meridional Wind
  • Planetary Wave
  • Middle Atmosphere
  • Lower Thermosphere