Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Modelling of positively charged aerosols in the polar summer mesopause region

Abstract

We present a model based analysis of rocket borne common volume measurements of electron number densities and aerosol charge densities during the ECHO campaign in 1994. During that campaign a sounding rocket was launched into a noctilucent cloud (NLC) as detected by a ground based lidar. At NLC altitudes a particle impact detector gave strong evidence for positively charged aerosols, and an electron probe measured a significant electron enhancement. We have applied a model of aerosol charging to these measurements and find that the existence of positively charged aerosols can be explained if they mainly consist of a substance with a sufficiently low work function. The electron enhancement as well as the aerosol size and number density deduced from our model are consistent with the electron probe and lidar measurements, respectively. Considering the photoelectrical properties of various metals we conclude that only sodium and potassium have a sufficiently low work function to allow for significant photoemission. Even under very favourable conditions the maximum positive charge accumulated on the aerosols is only approximately 4 elementary charges which is much less than discussed in some of the current theories for the creation of polar mesosphere summer echoes. We note that the amount of sodium or potassium required to form these particles is far above the natural abundances at NLC altitudes. The exact abundance and composition of the aerosols need to be known at the time of the in situ measurements in order to make more sophisticated comparisons between measurements and models.

References

  • Blix, T. A., E. V. Thrane, J. Trøim, and U. P. Hoppe, The role of charged aerosols in connection with noctilucent clouds and polar mesosphere summer echoes, in Proceedings of the 12th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Lillehammer, Norway, 1995.

  • Brasseur, G. and P. C. Simon, Stratospheric chemical and thermal response to long term variability in solar UV-radiance, J. Geophys. Res., 86, 7343–7362, 1981.

    Article  Google Scholar 

  • Cho, J. Y. N. and J. Röttger, An updated review of polar mesosphere summer echoes: Observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res., 102, 2001–2020, 1997.

    Article  Google Scholar 

  • Clemesha, B. R., D. M. Simonich, H. Takahashi, S. M. L. Melo, and J. M. C. Plane, Experimental evidence for photochemical control of the atmospheric sodium layer, J. Geophys. Res., 100, 18,909–18,916, 1995.

    Article  Google Scholar 

  • Ecklund, W. L. and B. B. Balsley, Long-term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska, J. Geophys. Res., 86, 7775–7780, 1981.

    Article  Google Scholar 

  • Feuerbacher, B. and B. Fitton, Experimental investigation of photoemission from satellite surface materials, J. Appl. Phys., 43, 1563–1572, 1972.

    Article  Google Scholar 

  • Fowler, R. H., The analysis of photoelectric sensitivity curves for clean metals at various temperatures, Phys. Rev., 38, 45–56, 1931.

    Article  Google Scholar 

  • Havnes, O., U. de Angelis, R. Bingham, C. K. Goertz, G. E. Morfill, and V. Tsytovich, On the role of dust in the summer mesopause, J. Atmos. Terr. Phys., 52, 637–643, 1990.

    Article  Google Scholar 

  • Havnes, O., F. Melandsø, C. La Hoz, T. K. Aslaksen, and T. Hartquist, Charged dust in the Earth’s mesopause: Effects on radar backscatter, Phys. Scr., 45, 535–544, 1992.

    Article  Google Scholar 

  • Havnes, O., J. Trøim, T. Blix, W. Mortensen, L. I. Næsheim, E. Thrane, and T. Tønnesen, First detection of charged dust particles in the Earth’s mesosphere, J. Geophys. Res., 101, 10,839–10,847, 1996.

    Article  Google Scholar 

  • Hellwege, K. H. and A. M. Hellwege, Eigenschaften der Materie in ihren Aggregatzuständen: Optische Konstanten, Landolt-Börnstein, Teil, 8, 1–1–1–17, 1962.

    Google Scholar 

  • Hunten, D. M., R. P. Turco, and O. B. Toon, Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci., 37, 1342–1357, 1980.

    Article  Google Scholar 

  • Jensen, E. and G. E. Thomas, Charging of mesospheric particles: Implications of electron density and particle coagulation, J. Geophys. Res., 96, 18,603–18,615, 1991.

    Article  Google Scholar 

  • Jesse, O., Untersuchungen über die sogenannten leuchtenden Wolken, Meteorol Z., 8, 306–308, 1891.

    Google Scholar 

  • Kurzawa, H. and U. von Zahn, Sodium density and atmospheric temperature in the mesopause region in polar summer, J. Atmos. Terr. Phys., 52, 981–993, 1990.

    Article  Google Scholar 

  • Lübken, F.-J., Rocket-borne measurements of small scale structures and turbulence in the upper atmosphere, Adv. Space Res., 17(11), 25–35, 1996.

    Article  Google Scholar 

  • Lübken, F.-J., Thermal structure of the arctic summer mesosphere, J. Geophys. Res., 104, 9135–9149, 1999.

    Google Scholar 

  • Lübken, F.-J., K. H. Fricke, and M. Langer, Noctilucent clouds and the thermal structure near the arctic mesopause in summer, J. Geophys. Res., 101, 9489–9508, 1996.

    Article  Google Scholar 

  • Lübken, F.-J., M. Rapp, T. Blix, and E. Thrane, Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes, Geophys. Res. Lett., 25, 893–896, 1998.

    Article  Google Scholar 

  • Müller, U., A. Schmidt-Ott, and H. Burtscher, Photoelectric quantum yield of free silver particles near threshold, Z. Phys. B — Condensed Matter, 73, 103–106, 1988.

    Article  Google Scholar 

  • Müller, U., M. Amman, H. Burtscher, and A. Schmidt-Ott, Photoemission from clean and oxygen-covered ultrafine nickel particles, Phys. Rev. B, 44, 8284–8287, 1991.

    Article  Google Scholar 

  • Natanson, G. L., On the theory of the charging of amicroscopic aerosol particles as a result of capture of gas ions, Sov. Phys. Tech. Phys. (engl. Transl.), 30, 573–588, 1960.

    Google Scholar 

  • Nussbaumer, V., K. H. Fricke, M. Langer, W. Singer, and U. von Zahn, First simultaneous and common volume observations of noctilucent clouds and polar mesosphere summer echoes by lidar and radar, J. Geophys. Res., 101, 19,161–19,167, 1996.

    Article  Google Scholar 

  • Parthasarathy, R., Mesopause dust as a sink for ionization, J. Geophys. Res., 81, 2392–2396, 1976.

    Article  Google Scholar 

  • Reid, G. C., Ice particles and electron ‘bite-outs’ at the summer polar mesopause, J. Geophys. Res., 95, 13,891–13,896, 1990.

    Article  Google Scholar 

  • Schmitt-Ott, A., P. Schurtenberger, and H. C. Siegmann, Enormous yield of photoelectrons from small particles, Phys. Rev. Lett., 45, 1284–1287, 1980.

    Article  Google Scholar 

  • Thomas, G. E. and C. P. McKay, On the mean particle size and water content of polar mesospheric clouds, Planet. Space Sci., 33, 1209–1224, 1985.

    Article  Google Scholar 

  • Trakhtengerts, V. Y., Generation mechanism of polar mesosphere summer echoes, J. Geophys. Res., 99, 21,083–21,088, 1994.

    Article  Google Scholar 

  • Turco, R. P., O. B. Toon, R. C. Whitten, R. G. Keesee, and D. Hollenbach, Noctilucent Clouds: Simulation studies of their genesis, properties and global influences, Planet. Space Sci., 3, 1147–1181, 1982.

    Article  Google Scholar 

  • Ulwick, J. C., K. D. Baker, M. C. Kelley, B. B. Balsley, and W. L. Ecklund, Comparison of simultaneous MST radar and electron density probe measurements during STATE, J. Geophys. Res., 93, 6989–7000, 1988.

    Article  Google Scholar 

  • van de Hulst, H. C., Light Scattering by Small Particles, 88ff pp., Dover Publications, Inc., New York, 1981.

    Google Scholar 

  • von Zahn, U. and J. Höffner, Mesopause temperature profiling by potassium lidar, Geophys. Res. Lett., 23, 141–144, 1996.

    Article  Google Scholar 

  • Weast, R. C., CRC Handbook of Chemistry and Physics, 59th edition, CRC Press Inc., Florida, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rapp.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rapp, M., Lübken, FJ. Modelling of positively charged aerosols in the polar summer mesopause region. Earth Planet Sp 51, 799–807 (1999). https://doi.org/10.1186/BF03353238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353238

Keywords

  • Lidar
  • Aerosol Particle
  • Electron Number Density
  • Mode Radius
  • Noctilucent Cloud