Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Observed “long-term” temperature change in a midlatitude mesopause region in response to external perturbations

Abstract

Analysis of seven years (1990–1997) of measured temperature profiles in the mesopause region (84 to 102 km) at Fort Collins, CO (41°N, 105°W), shows that, after removing seasonal variations, there was an episoidic temperature excursion with an amplitude ranging from 7 K to 14 K. Observable increases began in 1992, maximum temperatures occurred during the first half of 1993, and the excursion was over by about 1996. Since this excursion followed the Mount Pinatubo eruption by a time scale consistent with published model simulations of the effect of stratospheric aerosol on the mesopause region, we attribute the temperature excursion to that eruption. In addition the data is consistent with a background cooling of roughly 1 K per year, most of which may be attributable to variability in the solar flux. Continued observation towards the coming solar maximum promises to quantify (assess) the “long-term” change in mesopause temperatures resulting from solar variability (anthropogenic effect).

References

  1. Barnes, J. E. and D. J. Hofmann, Lidar measurements of stratospheric aerosol over Mauna Loa Observatory, Geophys. Res. Lett., 24, 1923–1926, 1997.

    Article  Google Scholar 

  2. Brasseur, G. and C. Granier, Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion, Science, 257, 1239–1242, 1992.

    Article  Google Scholar 

  3. Brasseur, G. and M. H. Hitchman, Stratospheric response to trace gas perturbations: changes in ozone and temperature distribution, Science, 240, 634–637, 1988.

    Article  Google Scholar 

  4. Callis, L. B., R. E. Bougher, and J. D. Lambeth, The stratosphere: climatologies of the radiative heating and cooling rates and the diabatically diagnosed net circulation fields, J. Geophys. Res., 92, 5585–5607, 1987.

    Article  Google Scholar 

  5. Clancy, R. T. and D. W. Rusch, Climatology and trends of mesospheric (58–90 km) temperatures based upon 1982–1986 SME scattering profiles, J. Geophys. Res., 94, 3,377–3,393, 1989.

    Article  Google Scholar 

  6. Fricke, K. H. and U. von Zahn, Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar, J. Atmos. Terr. Phys., 47, 499–512, 1985.

    Article  Google Scholar 

  7. Garcia, R. S., S. Solomon, R. G. Roble, and D. W. Rush, Numerical response of the middle atmosphere to the 11-year solar cycle, Planet. Space Sci., 32, 411–423, 1984.

    Article  Google Scholar 

  8. Huang, T. Y. W. and G. P. Brasseur, Effect of long-term solar variability in a two-dimensional interactive model of the middle atmosphere, J. Geophys. Res., 98, 20,413–20,427, 1993.

    Article  Google Scholar 

  9. Keckhut, P., A. Hauchecorne, and M. L. Chanin, Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes, J. Geophys. Res., 100, 18,887–18,897, 1995.

    Article  Google Scholar 

  10. Labitzke, K. and M. P. McCormick, Stratospheric temperature increases due to Pinatubo aerosols, Geophys. Res. Lett., 19, 207–210, 1992.

    Article  Google Scholar 

  11. Lastoviska, J., D. Buresova, and J. Boska, Does QBO and the Mt. Pinatubo eruption affect the gravity wave activity in the lower ionosphere?, Studia geopg. et geod., 42, 170–182, 1998.

    Article  Google Scholar 

  12. Portmann, R. W., G. E. Thomas, S. Solomon, and R. R. Garcia, The importance of dynamical feedbacks on doubled CO2-induced changes in the thermal structure of the mesosphere, Geophys. Res. Lett., 22, 1733–1736, 1995.

    Article  Google Scholar 

  13. Rind, D., R. Suozzo, N. K. Balachandran, and M. J. Prather, Climate change and the middle atmosphere: The doubled CO2 climate, J. Atmos. Sci., 47, 475–494, 1990.

    Article  Google Scholar 

  14. Rind, D., N. K. Balachandran, and R. Suozzo, Climate change and the middle atmosphere. Part II: the impact of valcanic aerosols, J. Climate, 5, 189–208, 1992.

    Article  Google Scholar 

  15. Roble, R. G. and R. E. Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere andthermosphere?, Geophys. Res. Lett., 16, 1441–1444, 1989.

    Article  Google Scholar 

  16. Roble, R. G. and C. E. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM), Geophys. Res. Lett., 21, 417–420, 1994.

    Article  Google Scholar 

  17. She, C. Y. and U. von Zahn, The concept of two-level mesopause: Support through new lidar observation, J. Geophys. Res., 103, 5855–5863, 1998.

    Article  Google Scholar 

  18. She, C. Y., H. Latifi, J. R. Yu, R. J. Alvarez, II, R. E. Bills, and C. S. Gardner, Two-frequency lidar technique for mesospheric Na temperature measurements, Geophys. Res. Lett., 17, 929–932, 1990.

    Article  Google Scholar 

  19. She, C. Y., S. W. Thiel, and D. A. Krueger, Observed episodic warming at 86 and 100 km between 1990 and 1997: Effects of Mount Pinatubo eruption, Geophys. Res. Lett., 25, 497–500, 1998.

    Article  Google Scholar 

  20. States, R. J. and C. S. Gardner, Influence of the diurnal tide and thermospheric heat sources on the formation of mesospheric inversion layers, Geophys. Res. Lett., 25, 1483–1486, 1998.

    Article  Google Scholar 

  21. Williams, B. P., C. Y. She, and R. G. Roble, Seasonal climatology of the nighttime tidal perturbation of temperature in the midlatitude mesopause region, Geophys. Res. Lett., 25, 3301–3304, 1998.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David A. Krueger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krueger, D.A., She, C.Y. Observed “long-term” temperature change in a midlatitude mesopause region in response to external perturbations. Earth Planet Sp 51, 809–814 (1999). https://doi.org/10.1186/BF03353239

Download citation

Keywords

  • Solar Cycle
  • Middle Atmosphere
  • Solar Variability
  • Stratospheric Aerosol
  • Impact Function