Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Variability in MLT dynamics and species concentrations as observed by WINDII

Abstract

Airglow variability is a topic that has been studied for decades but an understanding of the role of the dynamical influence underlying this variability has only been achieved recently. The UARS dynamics instruments, HRDI (High Resolution Doppler Imager) and WINDII (WIND Imaging Interferometer) have been instrumental in providing this understanding, because they measure both winds and emission rates, and so are able to determine the coupling between the two. But ground-based observations are also an essential ingredient to this understanding, which has grown through intercomparisons between dataset and models through workshops such as DYSMER. This presentation begins by describing the influence of the diurnal tide on oxygen and hydroxyl airglow emission rates, including the seasonal variation. This is followed by a description of two planetary scale disturbance phenomena, the springtime transition, and a stratospheric warming. Auroral influences are also considered. While these investigations cover a wide range of mechanisms there is an underlying thread which is that it is these large scale dynamical processes that are responsible for determining the distribution of the airglow patterns detected, and thus the distribution of concentration of atomic oxygen.

References

  1. Angelatsi Coll, M. and J. M. Forbes, Dynamical influences on atomic oxygen and 5577 Å emission rates in the lower thermosphere, Geophys. Res. Lett., 25, 461–464, 1998.

    Article  Google Scholar 

  2. Burrage, M. D., N. Arvin, W. R. Skinner, and P. B. Hays, Observations of the O2 atmospheric band nightglow by the High Resolution Doppler Imager, J. Geophys. Res., 99, 15017–15023, 1994.

    Article  Google Scholar 

  3. Christophe-Glaume, J., Étude de la raie 5577 Å de l’oxygene dans la luminescence atmosphèric nocturne, Ann. Geophys., 21, 1, 1965.

    Google Scholar 

  4. Cogger, L. L., R. D. Elphinstone, and J. S. Murphree, Temporal and latitudinal 5577 Å airglow variations, Can. J. Phys., 59, 1296–1307, 1981.

    Article  Google Scholar 

  5. Donahue, T. M., B. Guenther, and R. J. Thomas, Distribution of atomic oxygen in the upper atmosphere deduced from Ogo 6 airglow observations, J. Geophys. Res., 78, 6662–6689, 1973.

    Article  Google Scholar 

  6. Dunkerton, T., C.-P. F. Hsu, and M. E. McIntyre, Some Eulerian and Lagrangian diagnostics for a model stratospheric warming, J. Atmos. Sci., 38, 819–843, 1981.

    Article  Google Scholar 

  7. McDade, I. C., et al., ETON 2: Quenching parameters for the proposed precursors of O2(b1Σ +g ) and O(1S) in the terrestrial nightglow, tiPlanet. Space Sci., 34, 789–800, 1986.

  8. McLandress, C., G. G. Shepherd, and B. H. Solheim, Satellite observations of thermospheric tides: results from the Wind Imaging Interferometer on UARS, J. Geophys. Res., 101, 4093–4114, 1996.

    Article  Google Scholar 

  9. Naujokat, B., K. Petzoldt, K. Labitzke, R. Lenschow, B. Rajewski, M. Wiesner, and R.-C. Wohlfart, The stratospheric winter 1991/92, Beilage zur Berliner Wetterkarte, Wissenschaftliche Einrichtung 07 im Fachbereich Geowissenschaften der Freien Universitat Berlin, ISSN 0938-5312,1992.

  10. Reed, E. I. and S. Chandra, The global characteristics of atmospheric emissions in the lower thermosphere and their aeronomic implications, J. Geophys. Res., 80, 3053–3062, 1975.

    Article  Google Scholar 

  11. Roble, R. G. and G. G. Shepherd, An analysis of Wind Imaging Interferometer observations of O(1S) equatorial emission rates using the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model, J. Geophys. Res., 102, 2467–2474, 1997.

    Article  Google Scholar 

  12. Shepherd, G. G., et al., WINDII: The Wind Imaging Interferometer on the Upper Atmosphere Research satellite, J. Geophys. Res., 98, 10,725–10,750, 1993.

    Article  Google Scholar 

  13. Shepherd, G. G., C. McLandress, and B. H. Solheim, Tidal influence on O(1S) airglow emission rate distributions at the geographic equator as observed by WINDII, Geophys. Res. Lett., 22, 275–278, 1995.

    Article  Google Scholar 

  14. Shepherd, G. G., R. G. Roble, C. McLandress, and W. E. Ward, WINDII observations of the 558 nm emission in the lower thermosphere: the influence of dynamics on composition, J. Atmos. Solar-Terr. Phys., 59, 655–667, 1997.

    Article  Google Scholar 

  15. Shepherd, G. G., R. G. Roble, S.-P. Zhang, C. McLandress, and R. H. Wiens, Tidal influence on midlatitude airglow: Comparison of satellite and ground-based observations with TIME-GCM predictions, J. Geophys. Res., 103, 14741–14751, 1998.

    Article  Google Scholar 

  16. Shepherd, G. G., J. Stegman, P. Espy, C. McLandress, G. Thuillier, and R. H. Wiens, Springtime transition in lower thermospheric atomic oxygen, J. Geophys. Res., 104, 213–223, 1999.

    Article  Google Scholar 

  17. Shepherd, M. G., R. L. Gattinger, Y. Rochon, G. G. Shepherd, B. H. Solheim, and D. J. W. Kendall, Auroral Observations with the WIND Imaging Interferometer (WINDII) on UARS, Adv. Space Res., 17, (11)5–(11)10, 1996.

    Article  Google Scholar 

  18. Stegman, J., D. Murtagh, and G. Witt, Extremes of oxygen airglow intensity, Abstract SA22C-11, AGU Spring Meeting Program, Montreal, May, 1992.

  19. Tohmatsu, T., Compendium of Aeronomy translated by T. Ogawa, 509 pp., Terra Scientific Publishing Company, Tokyo, Kluwer Academic Publishers, Dordrecht, 1990.

  20. Ward, W. E., A simple model of diurnal variations in the mesospheric oxygen nightglow, Geophys. Res. Lett., 1999 (in press).

  21. Yudin, V. A., M. A. Geller, B. V. Khattatov, D. A. Ortland, M. D. Burrage, C. McLandress, and G. G. Shepherd, TMTM simulations of tides: Comparison with UARS observations, Geophys. Res. Lett., 25, 221–224, 1998.

    Article  Google Scholar 

  22. Zhang, S. P. and G. G. Shepherd, The influence of the diurnal tide on the latitudinal distributions of the O(1S) and OH emission rates observed by WINDII on UARS, Geophys. Res. Lett., 26, 529–532, 1999.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gordon G. Shepherd.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shepherd, G.G., Zhang, S. & Wang, X. Variability in MLT dynamics and species concentrations as observed by WINDII. Earth Planet Sp 51, 845–853 (1999). https://doi.org/10.1186/BF03353243

Download citation

Keywords

  • Emission Rate
  • Diurnal Tide
  • Lower Thermosphere
  • Stratospheric Warming
  • Hydroxyl Emission