Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

  • Article
  • Published:

The influence of photochemistry on gravity waves in the middle atmosphere

Abstract

This paper focuses on the effect of diabatic processes due to photochemical heating on long-period gravity waves in the stratosphere, mesosphere and lower thermosphere. A linear diabatic gravity wave model is established and compared to a model of pure dynamical adiabatic gravity waves. The results indicate that the photochemistry has a damping effect on gravity waves in most regions of the stratosphere and mesosphere. However, the photochemistry has a destabilizing effect on gravity waves in the mesopause region. The photochemical heating process can induce a comparatively strong enhancement of gravity waves at the mesopause for lower temperatures. In the summer polar mesopause region, this growth rate may be greater by about one order of magnitude than the growth rate of gravity waves at other seasons and locations.

References

  • Allen, M., A new source of ozone in the terrestrial upper atmosphere?, J. Geophys. Res., 91, 2844–2848, 1986.

    Article  Google Scholar 

  • Allen, M. and M. L. Delitsky, A test of odd oxygen photochemistry using Spacelab 3 atmospheric trace molecule spectroscopy observations, J. Geophys. Res., 96, 12883–12891, 1991.

    Article  Google Scholar 

  • Allen, M., J. I. Lunine, and Y. I. Yung, The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 89(D3), 4841–4872, 1984.

    Article  Google Scholar 

  • Balsley, B. B., W. L. Ecklund, and D. C. Fritts, VHF echoes from the high-latitude mesosphere and lower thermosphere: observations and interpretations, J. Atmos. Sci., 40, 2451–2466, 1983.

    Article  Google Scholar 

  • Brasseur, G. and D. Offermann, Recombination of atomic oxygen near the mesopause: interpretation of rocket data, J. Geophys. Res., 91, 10818–10824, 1986.

    Article  Google Scholar 

  • Clancy, R. T., D. W. Rusch, R. J. Thomas, M. Allen, and R. S. Eckman, Model ozone photochemistry on the basis of solar mesosphere explorer mesospheric observations, J. Geophys. Res., 92, 3067–3080, 1987.

    Article  Google Scholar 

  • DeMore, W. B., C. J. Howard, S. P. Sander, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Molina, and M. J. Kurylo, Chemical kinetics and photochemical data for use in stratospheric modeling, Eval. 10, JPL Publ. 92-20, Jet Propul. Lab., Calif. Inst. of Tech., Pasadena, Calif., 1992.

    Google Scholar 

  • Dickinson, R. E., A method of parameterization of infrared cooling between altitudes of 30 km and 70 km, J. Atmos. Sci., 78, 4451–4457, 1973.

    Google Scholar 

  • Fomichev, V. I., W. E. Ward, and C. McLandress, Implications of variations in the 15 μm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic oxygen mixing ratio, J. Geophys. Res., 101(D2), 4041–4055, 1996.

    Article  Google Scholar 

  • Fritts, D. C., Gravit wave saturation in the middle atmosphere: a review of theory and observations, Reviews of Geophys. and Space Physics, 22, 275–308, 1984.

    Article  Google Scholar 

  • Fritts, D. C., S. A. Smith B. B. Balsley, and C. R. Philbrick, Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment, J. Geophys. Res., 93, 7015–7025, 1988.

    Article  Google Scholar 

  • Garcia, R. R. and S. Solomon, The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985.

    Article  Google Scholar 

  • Harris, R. D. and G. W. Adams, Where does the O(1D) energy go?, J. Geophys. Res., 88, 4918–4928, 1983.

    Article  Google Scholar 

  • Holton, J. R., An Introduction to Dynamic Meteorology, Chapter 9, pp. 161–183, Academic Press, Inc., 1972.

  • Leovy, C. B., Photochemical destabilization of gravity wave near the mesopause, J. Atmos. Sci., 23, 223–232, 1966.

    Article  Google Scholar 

  • Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.

    Article  Google Scholar 

  • Llewellyn, E. J. and I. C. McDade, A reference model for atomic oxygen in the terrestrial atmosphere, Adv. Space Res., 18(9/10), 209–226, 1996.

    Article  Google Scholar 

  • Lübken, F.-J., U. von Zahn, A. Manson, C. Meek, U.-P. Hoppe, F. J. Schmidlin, J. Stegmen, D. P. Murtagh, R. Ruster, G. Schmidt, H.-U. Widdel, and P. Espy, Mean state densities, temperatures and winds during the MAC.SINE and MAC/EPSILON campaigns, J. Atmos. Terr. Phys., 52(10/11), 955–970, 1990.

    Article  Google Scholar 

  • Lübken, F.-J., Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations, J. Geophys. Res., 102(D12), 13441–13456, 1997.

    Article  Google Scholar 

  • McDade, I. C. and E. J. Llewellyn, An assessment of the H + O3 heating efficiencies in the night-time mesopause region, Ann. Geophysicae, 11, 47–51, 1993.

    Google Scholar 

  • Meriwether, J. W. and M. G. Mlynczak, Is chemical heating a major cause of the mesosphere inversion layer?, J. Geophys. Res., 100(D1), 1379–1387, 1995.

    Article  Google Scholar 

  • Mlynczak, M. G. and S. Solomon, A detail evaluation of the heating efficiencyinthe middle atmosphere, J. Geophys. Res., 98(D6), 10517–10541, 1993.

    Article  Google Scholar 

  • Reid, I. M., R. Ruster, P. Czechowsky, and G. Schmidt, VHF radar measurements of momentum flux in the summer polar mesosphere over Andenes (69°N, 16°E), Norway, Geophys. Res. Lett., 15, 1263–1266, 1988.

    Article  Google Scholar 

  • Riese, M., D. Offermann, and G. Brasseur, Energy released by recombination of atomic oxygen and related species at mesospause heights, J. Geophys. Res., 99, 14585–14594, 1994.

    Article  Google Scholar 

  • Schmidlin, F. J., First observation of mesopause temperature lower than 100 K, Geophys. Res. Lett., 19, 1643, 1992.

    Article  Google Scholar 

  • Strobel, D. F., M. E. Summers, R. M. Bevilacqua, M. T. Deland, and M. Allen, Vertical constituent transport in the mesosphere, J. Geophys. Res., 92, 6691–6698, 1987.

    Article  Google Scholar 

  • Thomas, R. J., C. A. Barth, G. J. Rottman, D. W. Rusch, G. H. Mount, G. M. Lawrence, R. W. Sanders, G. E. Thomas, and L. E. Clements, ozone density inthe mesosphere (50–90 km) measured by the SME near infrared spectrometer, Geophys. Res. Lett., 10, 245–248, 1983.

    Article  Google Scholar 

  • VanZandt, T. E. and D. C. Fritts, A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability, Pure Appl. Geophys., 130, 399–420, 1989.

    Article  Google Scholar 

  • Von Zahn, U. and W. Meyer, Mesopause temperature in polar summer, J. Geophys. Res., 94(D12), 14647–14651, 1989.

    Article  Google Scholar 

  • Xun Zhu and J. R. Holton, Photochemical damping of inertio-gravity waves, J. Atmos. Sci., 43, 2578–2584, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J. The influence of photochemistry on gravity waves in the middle atmosphere. Earth Planet Sp 51, 855–861 (1999). https://doi.org/10.1186/BF03353244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353244

Keywords