Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)
- Article
- Open access
- Published:
The influence of photochemistry on gravity waves in the middle atmosphere
Earth, Planets and Space volume 51, pages 855–861 (1999)
Abstract
This paper focuses on the effect of diabatic processes due to photochemical heating on long-period gravity waves in the stratosphere, mesosphere and lower thermosphere. A linear diabatic gravity wave model is established and compared to a model of pure dynamical adiabatic gravity waves. The results indicate that the photochemistry has a damping effect on gravity waves in most regions of the stratosphere and mesosphere. However, the photochemistry has a destabilizing effect on gravity waves in the mesopause region. The photochemical heating process can induce a comparatively strong enhancement of gravity waves at the mesopause for lower temperatures. In the summer polar mesopause region, this growth rate may be greater by about one order of magnitude than the growth rate of gravity waves at other seasons and locations.
References
Allen, M., A new source of ozone in the terrestrial upper atmosphere?, J. Geophys. Res., 91, 2844–2848, 1986.
Allen, M. and M. L. Delitsky, A test of odd oxygen photochemistry using Spacelab 3 atmospheric trace molecule spectroscopy observations, J. Geophys. Res., 96, 12883–12891, 1991.
Allen, M., J. I. Lunine, and Y. I. Yung, The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 89(D3), 4841–4872, 1984.
Balsley, B. B., W. L. Ecklund, and D. C. Fritts, VHF echoes from the high-latitude mesosphere and lower thermosphere: observations and interpretations, J. Atmos. Sci., 40, 2451–2466, 1983.
Brasseur, G. and D. Offermann, Recombination of atomic oxygen near the mesopause: interpretation of rocket data, J. Geophys. Res., 91, 10818–10824, 1986.
Clancy, R. T., D. W. Rusch, R. J. Thomas, M. Allen, and R. S. Eckman, Model ozone photochemistry on the basis of solar mesosphere explorer mesospheric observations, J. Geophys. Res., 92, 3067–3080, 1987.
DeMore, W. B., C. J. Howard, S. P. Sander, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Molina, and M. J. Kurylo, Chemical kinetics and photochemical data for use in stratospheric modeling, Eval. 10, JPL Publ. 92-20, Jet Propul. Lab., Calif. Inst. of Tech., Pasadena, Calif., 1992.
Dickinson, R. E., A method of parameterization of infrared cooling between altitudes of 30 km and 70 km, J. Atmos. Sci., 78, 4451–4457, 1973.
Fomichev, V. I., W. E. Ward, and C. McLandress, Implications of variations in the 15 μm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic oxygen mixing ratio, J. Geophys. Res., 101(D2), 4041–4055, 1996.
Fritts, D. C., Gravit wave saturation in the middle atmosphere: a review of theory and observations, Reviews of Geophys. and Space Physics, 22, 275–308, 1984.
Fritts, D. C., S. A. Smith B. B. Balsley, and C. R. Philbrick, Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment, J. Geophys. Res., 93, 7015–7025, 1988.
Garcia, R. R. and S. Solomon, The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985.
Harris, R. D. and G. W. Adams, Where does the O(1D) energy go?, J. Geophys. Res., 88, 4918–4928, 1983.
Holton, J. R., An Introduction to Dynamic Meteorology, Chapter 9, pp. 161–183, Academic Press, Inc., 1972.
Leovy, C. B., Photochemical destabilization of gravity wave near the mesopause, J. Atmos. Sci., 23, 223–232, 1966.
Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.
Llewellyn, E. J. and I. C. McDade, A reference model for atomic oxygen in the terrestrial atmosphere, Adv. Space Res., 18(9/10), 209–226, 1996.
Lübken, F.-J., U. von Zahn, A. Manson, C. Meek, U.-P. Hoppe, F. J. Schmidlin, J. Stegmen, D. P. Murtagh, R. Ruster, G. Schmidt, H.-U. Widdel, and P. Espy, Mean state densities, temperatures and winds during the MAC.SINE and MAC/EPSILON campaigns, J. Atmos. Terr. Phys., 52(10/11), 955–970, 1990.
Lübken, F.-J., Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations, J. Geophys. Res., 102(D12), 13441–13456, 1997.
McDade, I. C. and E. J. Llewellyn, An assessment of the H + O3 heating efficiencies in the night-time mesopause region, Ann. Geophysicae, 11, 47–51, 1993.
Meriwether, J. W. and M. G. Mlynczak, Is chemical heating a major cause of the mesosphere inversion layer?, J. Geophys. Res., 100(D1), 1379–1387, 1995.
Mlynczak, M. G. and S. Solomon, A detail evaluation of the heating efficiencyinthe middle atmosphere, J. Geophys. Res., 98(D6), 10517–10541, 1993.
Reid, I. M., R. Ruster, P. Czechowsky, and G. Schmidt, VHF radar measurements of momentum flux in the summer polar mesosphere over Andenes (69°N, 16°E), Norway, Geophys. Res. Lett., 15, 1263–1266, 1988.
Riese, M., D. Offermann, and G. Brasseur, Energy released by recombination of atomic oxygen and related species at mesospause heights, J. Geophys. Res., 99, 14585–14594, 1994.
Schmidlin, F. J., First observation of mesopause temperature lower than 100 K, Geophys. Res. Lett., 19, 1643, 1992.
Strobel, D. F., M. E. Summers, R. M. Bevilacqua, M. T. Deland, and M. Allen, Vertical constituent transport in the mesosphere, J. Geophys. Res., 92, 6691–6698, 1987.
Thomas, R. J., C. A. Barth, G. J. Rottman, D. W. Rusch, G. H. Mount, G. M. Lawrence, R. W. Sanders, G. E. Thomas, and L. E. Clements, ozone density inthe mesosphere (50–90 km) measured by the SME near infrared spectrometer, Geophys. Res. Lett., 10, 245–248, 1983.
VanZandt, T. E. and D. C. Fritts, A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability, Pure Appl. Geophys., 130, 399–420, 1989.
Von Zahn, U. and W. Meyer, Mesopause temperature in polar summer, J. Geophys. Res., 94(D12), 14647–14651, 1989.
Xun Zhu and J. R. Holton, Photochemical damping of inertio-gravity waves, J. Atmos. Sci., 43, 2578–2584, 1986.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xu, J. The influence of photochemistry on gravity waves in the middle atmosphere. Earth Planet Sp 51, 855–861 (1999). https://doi.org/10.1186/BF03353244
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03353244