Skip to main content

Volume 51 Supplement 7-8

Special Issue: Dynamics and Structure of the Mesopause Region (DYSMER)

Response of the airglow OH emission, temperature and mesopause wind to the atmospheric wave propagation over Shigaraki, Japan

Abstract

Simultaneous observations of the night airglow OH (6, 2) band emission intensity and rotational temperature, by a sky scanning airglow spectrophotometer, and meteor winds, by a middle and upper atmosphere radar (MU radar), were carried out at Shigaraki (34.9°N, 136.1°E), Japan, from October 29 to November 11, 1994, as the first phase of a campaign, and from July 25 to July 31, 1995 as the second phase. Horizontal structures in the OH emission intensity and rotational temperature were monitored optically, together with the background wind and its wave induced fluctuations, measured by MU radar. Since the MU radar makes a direct measurement of the vertical wavelength, and the OH spectrophotometer makes a direct measurement of the horizontal wavelength, the two techniques are mutually complementary to determine intrinsic wave parameters. Gravity waves with intrinsic periods of 2 to 9 hours, horizontal wavelengths of 500 to 3000 km and vertical wavelengths of 12 to 75 km were identified. Between the two different observation techniques, there is a reasonable agreement in the inferred wave characteristics.

References

  • Anderson, N., On the calculation of filter coefficients for maximum entropy spectral analysis, Geophys., 39, 69–72, 1974.

    Article  Google Scholar 

  • Bates, D. R. and M. Nicolet, The photochemistry of atmospheric water vapor, J. Geophys. Res., 55, 301, 1950.

    Article  Google Scholar 

  • Coxon, J. A. and S. C. Foster, Rotational analyses of hydroxyl vibrationrotation emission bands: molecular constants for OH X2Pi, 6 < v < 10, Can. J. Phys., 60, 41, 1982.

    Article  Google Scholar 

  • Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system, 1. Antenna and power amplifiers, Radio Sci., 20, 1155–1168, 1985a.

    Article  Google Scholar 

  • Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system, 2. In-house equipment, Radio Sci., 20, 1169–1176, 1985b.

    Article  Google Scholar 

  • Gardner, C. S. and D. G. Voelz, Lidar studies of the nighttime sodium layer over Urbana, 2, Gravity waves, J. Geophys. Res., 92, 4673, 1987.

    Article  Google Scholar 

  • Hines, C. O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441, 1960.

    Article  Google Scholar 

  • Jones, W. L., Ray tracing for internal gravity waves, J. Geophys. Res., 74(8), 2028–2033, 1969.

    Article  Google Scholar 

  • Kato, S., Earth’s atmosphere in dynamic coupling envisaged through atmospheric tides and atmospheric gravity waves: A view on the past-present-future research, J. Geophys. Res., 101(A5), 10577–10585, 1996.

    Article  Google Scholar 

  • Kaveh, M. and G. A. Lippert, An optimum tapered Burg method for linear prediction and spectral analysis, IEEE Transactions Acoustics. Speech and Sig. Proceeding. ASSP, 31, 438–444, 1983.

    Article  Google Scholar 

  • Krassovsky, V. I. and M. V. Shagaev, Inhomogeneities and wavelike variations of the rotational temperature of atmospheric hydroxyl, Planet. Space Sci., 22, 1334–1337, 1974.

    Article  Google Scholar 

  • Krassovsky, V. I., B. P. Potapov, A. I. Semenov, M. V. Shagaev, N. N. Shefov, V. G. Sobolev, and T. I. Toroshelidze, Internal gravity waves near the mesopause and the hydroxyl emission, Ann. Geophysique., 33, 347–356, 1977.

    Google Scholar 

  • Makhlouf, U. B., R. H. Picard, and J. R. Winick, Photochemical-dynamical modeling of the measured response of airglow to gravity waves, J. Geophys. Res., 100, 11289–11311, 1995.

    Article  Google Scholar 

  • Manson, A. H., Gravity wave horizontal and vertical wavelengths: An update of measurements in the mesopause region (80–100 km), J. Atmos. Sci., 47(23), 2765, 1990.

    Article  Google Scholar 

  • Manson, A. H. and C. E. Meek, Gravity wave propagation characteristics (60–120 km) as determined by the Saskatoon MF radar (Gravnet) system: 1983–1985 at 52°N, J. Atmos. Sci., 45, 932–946, 1988.

    Article  Google Scholar 

  • Mies, F. H., Calculated Vibrational Transition Probabilities of OH (X2II), J. Molecular Spectroscopy., 53, 150–188, 1974.

    Article  Google Scholar 

  • Moreels, G. and M. Herse, Photographic evidence of waves around the 85 km level, Planet. Space Sci., 25, 265–273, 1977.

    Article  Google Scholar 

  • Nakamura, T., T. Tsuda, M. Tsutsumi, K. Kita, T. Uehara, S. Kato, and S. Fukao, Meteor wind observations with the MU radar, Radio Sci., 26, 857–869, 1991.

    Article  Google Scholar 

  • Nakamura, T., T. Tsuda, M. Yamamoto, S. Fukao, and S. Kato, Characteristics of gravity waves in the mesosphere observed with the MU radar, 2. Propagation direction, J. Geophys. Res., 98, 8911–8923, 1993.

    Article  Google Scholar 

  • Pendleton, W. R. J., P. J. Espy, and M. R. Hammond, Evidence for non-localthermodynamic-equilibrium rotation in the OH nightglow, J. Geophys. Res., 98, 11567, 1993.

    Article  Google Scholar 

  • Peterson, A. W., Airglow events visible to the naked eye, Appl. Optics, 18, 3390–3393, 1979.

    Article  Google Scholar 

  • Shefov, N. N. and T. I. Toroshelidze, Dynamics of minor constituent emissions, Ann. Geophysique., 30, 79, 1974.

    Google Scholar 

  • Swenson, G. R. and C. S Gardner, Preface for “The 1993 airbone Lidar and Observations of the Hawaiian Airglow/Airbone Noctilucent cloud campaigns”, J. Geophys. Res., 103(D6), 6249–6250, 1998.

    Article  Google Scholar 

  • Takahashi, H., B. R. Clemesha, Y. Sahai, P. P. Batista, and D. M. Simonich, Seasonal variations of mesospheric hydrogen and ozone concentrations derived from ground-nased airglow and lidar observations, J. Geophys. Res., 97, 5987, 1992.

    Article  Google Scholar 

  • Takahashi, H., P. P. Batista, R. A. Buriti, D. Gobbi, T. Nakamura, T. Tsuda, and S. Fukao, Simultaneous measurements of airglow OH emission and meteor wind by a scanning photometer and the MU radar, J. Atmos. Sol.-Terr. Phys., 60, 1649–1668, 1998.

    Article  Google Scholar 

  • Taylor, M. J., P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, and W. R. Pendleton, Jr., Simultaneous intensity, temperature and imaging measurements of short period wave structure in the OH nightglow emission, Planet. Space Sci., 39, 1171–1188, 1991.

    Article  Google Scholar 

  • Taylor, M. J., D. C. Fritts, and J. R. Isler, Determination of horizontal and vertical structure of a novel pattern of short period gravity waves imaged during ALOHA-93, Geophys. Res. Lett., 22(20), 2837–2840, 1995a.

    Article  Google Scholar 

  • Taylor, M. J., M. B. Bishop, and V. Taylor, All-sky measurements of short waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0, 1) nightglow emissions during the ALOHA-93 campaign, Geophys. Res. Lett., 22(20), 2833–2836, 1995b.

    Article  Google Scholar 

  • Taylor, M. J., W. R. Pendleton, Jr., S. Clark, H. Takahashi, G. Gobbi, and R. A. Goldberg, Image measurements of short-period gravity waves at equatorial latitudes, J. Geophs. Res., 102(D22), 26283–26299, 1997.

    Article  Google Scholar 

  • Tsuda, T., S. Kato, A. H. Manson, and C. E. Meek, Characteristics of semidiurnal tides observed by the Kyoto meteor radar and Saskatoon medium-frequencdy radar, J. Geophys. Res., 93(D6), 7027–7036, 1988.

    Article  Google Scholar 

  • Tsuda, T., T. Inoue, D. C. Fritts, T. E. VanZandt, S. Kato, T. Sato, and S. Fukao, MST radar observations of a saturated gravity wave spectrum, J. Atmos. Sci., 46, 2440–2447, 1989.

    Article  Google Scholar 

  • Tsuda, T., S. Kato, T. Yokoi, T. Inoue, M. Yamamoto, T. E. Vanzandt, S. Fukao, and T. Sate, Gravity waves in the mesosphere observed with the middle and upper atmosphere radar, Radio Sci., 26, 1005–1018, 1990.

    Article  Google Scholar 

  • Tsutsumi, M., T. Tsuda, T. Nakamura, and S. Fukao, Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere radar, Radio Sci., 29, 599–610, 1994.

    Article  Google Scholar 

  • Turnbull, D. N. and R. P. Lowe, New hydroxyl transition probabilities and their importance in airglow studies, Planet. Space Sci., 37, 723–738, 1989.

    Article  Google Scholar 

  • Walterscheid, R. L. and G. Schubert, Dynamical-chemical model of fluctuations in the OH airglow driven by migrating tides, stationary tides, and planetary waves, J. Geophys. Res., 100, 17443–17449, 1995.

    Article  Google Scholar 

  • Walterscheid, R. L., G. Schubert, and M. P. Hickey, Comparison of theories for gravity wave induced fluctuations in airglow emissions, J. Geophys. Res., 99, 3935, 1994.

    Article  Google Scholar 

  • Zhang, S. P., R. N. Peterson, R. H. Wiens, and G. G. Shepherd, Gravity Waves from O2 nightglow during the AINDA ’89 campaign I: emission rate/temperature observations, J. Atmos. Terr. Phys., 55, 355, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Takahashi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Batista, P.P., Buriti, R.A. et al. Response of the airglow OH emission, temperature and mesopause wind to the atmospheric wave propagation over Shigaraki, Japan. Earth Planet Sp 51, 863–875 (1999). https://doi.org/10.1186/BF03353245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353245

Keywords

  • Gravity Wave
  • Rotational Temperature
  • Background Wind
  • Vertical Wavelength
  • Meteor Radar