Skip to main content

Volume 53 Supplement 6

Special Issue: Magnetic Reconnection in Space and Laboratory Plasmas

The nature of Petschek-type reconnection

Abstract

It is not always appreciated that Petschek’s reconnection mechanism is a particular solution of the MHD equations which applies only when special conditions are met. Specifically, it requires that the flow into the reconnection region be set up spontaneously without external forcing. This condition is satisfied when reconnection in a simple current sheet is initiated by enhancing the resistivity in a localized region. Such a process disrupts the current sheet and launches slow-mode waves which steepen into nearly switch-off shocks of the type predicted by Petschek. As these shocks propagate outwards, the current sheet reforms at the original point of the disturbance, and a quasi-steady Petschek-like configuration is set up. Syrovatskii-like configurations which force reconnection by driving a flow toward an initially current-free, orthogonal x-point are less likely to satisfy the conditions required for Petschek-type reconnection.

References

  • Biernat, H. K. and M. F. Heyn, Unsteady Petschek reconnection, J. Geophys. Res., 92, 3392–3396, 1987.

    Article  Google Scholar 

  • Biskamp, D., Magnetic reconnection via current sheets, Phys. Fluids, 29, 1520–1531, 1986.

    Article  Google Scholar 

  • Erkaev, N. V., V. S. Semenov, and F. Jamitzky, Reconnection rate for the inhomogeneous resistivity Petschek model, Phys. Rev. Lett., 84, 1455–1458, 2000.

    Article  Google Scholar 

  • Green, R. M., Modes of annihilation and reconnection of magnetic fields, in Solar and Stellar Magnetic Fields, edited by R. Lüst, pp. 398–404, North-Holland Publishing Co., Amsterdam, 1965.

    Google Scholar 

  • Heyn, M. F. and V. S. Semenov, Rapid reconnection in compressible plasma, Phys. Plasmas, 3, 2725–2741, 1996.

    Article  Google Scholar 

  • Jin, S.-P. and W.-H. Ip, Two-dimensional compressible magnetohydrodynamic simulation of the driven reconnection process, Phys. Fluids B, 3, 1927–1936, 1991.

    Article  Google Scholar 

  • Lee, L. C. and Z. F. Fu, Multiple x-line reconnection, 1. A criterion for the transition from a single x-line to a multiple x-line reconnection, J. Geophys. Res., 91, 6807–6815, 1986.

    Article  Google Scholar 

  • Litvinenko, Y. E. and I. J. D. Craig, Magnetic energy release in flux pile-up merging, Solar Phys., 189, 315–329, 1999.

    Article  Google Scholar 

  • Parker, E. N., Sweet’s mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., 62, 509–520, 1957.

    Article  Google Scholar 

  • Parker, E. N., Comments on the reconnexion rate of magnetic fields, J. Plasma Phys., 9, 49–63, 1973.

    Article  Google Scholar 

  • Petschek, H. E., Magnetic field annihilation, in The Physics of Solar Flares, edited by W. N. Hess, pp. 425–439, NASA, SP-50, 1964.

  • Priest, E. R. and T. G. Forbes, New models for fast steady-state magnetic reconnection, J. Geophys. Res., 91, 5579–5588, 1986.

    Article  Google Scholar 

  • Priest, E. R. and T. G. Forbes, Does fast magnetic reconnection exist?, J. Geophys. Res., 97, 16757–16772, 1992.

    Article  Google Scholar 

  • Priest, E. R. and T. G. Forbes, Magnetic Reconnection—MHD Theory and Applications, 600 pp., Cambridge Univ. Press, Cambridge, 2000.

    Book  Google Scholar 

  • Rijnbeek, R. P. and V. S. Semenov, Features of a Petschek-type reconnection model, Trends in Geophys. Res., 2, 247–268, 1993.

    Google Scholar 

  • Sato, T., Strong plasma acceleration by slow shocks resulting from magnetic reconnection, J. Plasma Phys., 30, 109–124, 1983.

    Article  Google Scholar 

  • Scholer, M., Undriven magnetic reconnection in an isolated current sheet, J. Geophys. Res., 94, 8805–8812, 1989.

    Article  Google Scholar 

  • Schumacher, J. and B. Kliem, Dynamic current sheets with localized anomalous resistivity, Phys. Plasmas, 3, 4703–4711, 1996.

    Article  Google Scholar 

  • Semenov, V. S., M. F. Heyn, and I. V. Kubyshkin, Reconnection of magnetic field lines in a nonstationary case, Sov. Astron., 27, 660–665, 1983.

    Google Scholar 

  • Semenov, V. S., E. P. Vasilyev, and A. I. Purovkin, A scheme for the non-steady reconnection of magnetic lines of force, Geomagnet. Aeronomy (Engl. Transl), 24, 370–373, 1984.

    Google Scholar 

  • Somov, B. V., Physical Processes in Solar Flares, 249 pp., Kluwer, Dordrecht, 1992.

    Book  Google Scholar 

  • Sonnerup, B. U., Ö., Magnetic-field reconnection in a highly conducting incompressible fluid, J. Plasma Phys., 4, 161–174, 1970.

    Article  Google Scholar 

  • Soward, A. M. and E. R. Priest, Fast magnetic field-line reconnection in a compressible fluid, 1, Coplanar field lines, J. Plasma Phys., 28, 335–367, 1982.

    Article  Google Scholar 

  • Strachan, N. and E. R. Priest, A general family of nonuniform reconnection models with separatrix jets, Geophys. Astrophys. Fluid Dynamics, 74, 245, 1994.

    Article  Google Scholar 

  • Sweet, P. A., The neutral point theory of solar flares, in Electromagnetic Phenomenon in Cosmical Physics, edited by B. Lehnert, pp. 123–139, Cambridge Univ. Press, New York, 1958.

    Google Scholar 

  • Syrovatskii, S. I., Formation of current sheets in a plasma with a frozen-in strong magnetic field, Sov. Phys. JETP (Engl. Transl.), 33, 933–940, 1971.

    Google Scholar 

  • Ugai, M., Self-consistent development of fast magnetic reconnection with anomalous plasma resistivity, Plasma Phys. Contr. Fusion, 26, 1549, 1984.

    Article  Google Scholar 

  • Ugai, M., MHD simulations of fast reconnection spontaneously developing in a current sheet, Computer Phys. Communications, 49, 185–192, 1988.

    Article  Google Scholar 

  • Ugai, M., Computer studies on plasmoid dynamics associated with the spontaneous fast reconnection mechanism, Phys. Plasmas, 2, 3320–3328, 1995.

    Article  Google Scholar 

  • Ugai, M. and T. Tsuda, Magnetic field-line reconnexion by localized enhancement of resistivity. I - Evolution in a compressible MHD fluid, J. Plasma Phys., 17, 337–356, 1977.

    Article  Google Scholar 

  • Vasyliunas, V. M., Theoretical models of magnetic field line merging, 1, Rev. Geophys., 13, 303–336, 1975.

    Article  Google Scholar 

  • Yan, M., L. C. Lee, and E. R. Priest, Fast magnetic reconnection with small shock angles, J. Geophys. Res., 97, 8277–8293, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Forbes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forbes, T.G. The nature of Petschek-type reconnection. Earth Planet Sp 53, 423–429 (2001). https://doi.org/10.1186/BF03353252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353252

Keywords

  • Mach Number
  • Current Sheet
  • Magnetic Reconnection
  • Diffusion Region
  • Magnetic Reynolds Number