Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Collisionless driven reconnection in an open system

Abstract

Particle simulation studies of collisionless driven reconnection in an open system are presented. Collisionless reconnection evolves in two steps in accordance with the formation of two current layers, i.e., an ion current layer in the early ion phase and an electron current layer in the late electron phase. After the electron current layer is formed inside the ion current layer, the system relaxes gradually to a steady state when convergent plasma flow is driven by an external electric field with a narrow input window. On the other hand, when the convergent plasma flow is driven from the wide input window, magnetic reconnection takes place in an intermittent manner, due to the frequent formation of magnetic islands in the vicinity of neutral sheet.

References

  1. Amo, H., T. Sato, A. Kageyama, K. Watanabe, R. Horiuchi, T. Hayashi, Y. Todo, T. H. Watanabe, and H. Takamaru, Intermittent energy bursts and recurrent topological change of a twisting magnetic flux tube, Phys. Rev., E51, 3838–3841, 1995.

    Google Scholar 

  2. Biskamp, D., E. Schwarz, and J. F. Drake, Ion-controlled collisionless magnetic reconnection, Phys. Rev. Lett., 75, 3850–3853, 1995.

    Article  Google Scholar 

  3. Daughton, W., The unstable eigenmodes of a neutral sheet, Phys. Plasmas, 6, 1329–1343, 1999.

    Article  Google Scholar 

  4. Davidson, R. C. and N. T. Gladd, Anomalous transport properties associated with the lower-hybrid-drift instability, Phys. Fluids, 18, 1327, 1975.

    Article  Google Scholar 

  5. Hesse, M. and D. Winske, Electron dissipation in collisionless magnetic reconnection, J. Geophys. Res., 103, 26479–26486, 1998.

    Article  Google Scholar 

  6. Horiuchi, R. and T. Sato, Particle simulation study of driven magnetic reconnection in a collisionless plasma, Phys. Plasmas, 1, 3587–3597, 1994.

    Article  Google Scholar 

  7. Horiuchi, R. and T. Sato, Particle simulation study of collisionless driven reconnection in a sheared magnetic field, Phys. Plasmas, 4, 277–289, 1997.

    Article  Google Scholar 

  8. Horiuchi, R. and T. Sato, Three-dimensional particle simulation of plasma instability and collisionless reconnection in a current sheet, Phys. Plasmas, 6, 4565–4574, 1999.

    Article  Google Scholar 

  9. Horton, W. and T. Tajima, Decay of correlations and the collisionless conductivity in the geomagnetic tail, Geophys. Res. Lett., 17, 123–126, 1990.

    Article  Google Scholar 

  10. Kitabata, H., T. Hayashi, T. Sato, R. Horiuchi, K. Watanabe, A. Kageyama, T. H. Watanabe, Y. Todo, and H. Takamaru, Impulsive nature in magnetohydrodynamic driven reconnection, J. Phys. Soc. Japan, 65, 3208–3214, 1996.

    Article  Google Scholar 

  11. Krall, N. A. and P. C. Liewer, Low-frequency instability in magnetic pulses, Phys. Rev., 4, 2094–2103, 1971.

    Article  Google Scholar 

  12. Nishida, A., Geomagnetic Diagnostics of the Magnetoshpere, p. 38, Springer-Verlang, New York, 1978.

    Google Scholar 

  13. Ono, Y., M. Yamada, T. Akao, T. Tajima, and R. Matsumoto, Ion acceleration and direct ion heating in three-component magnetic reconnection, Phys. Rev. Lett., 76, 3328–3331, 1996.

    Article  Google Scholar 

  14. Ozaki, M., T. Sato, R. Horiuchi, and the Complex Simulation Group, Electromagnetic instability and anomalous resistivity in a magnetic neutral sheet, Phys. Plasmas, 3, 2265–2274, 1996.

    Article  Google Scholar 

  15. Pei, W., R. Horiuchi, and T. Sato, Long time scale evolution of collisionless driven reconnection in a two-dimensional open system, Phys. Plasmas, 2001 (in press).

  16. Priest, E. R., Solar Magnetohydrodynamics, Reidel, Dordrecht, 1982.

    Google Scholar 

  17. Shay, M. A., J. F. Drake, B. N. Rogers, and R. E. Denton, The scaling of collisionless, magnetic reconnection for large systems, Geophys. Res. Lett., 26, 2163–2166, 1999.

    Article  Google Scholar 

  18. Tanaka, M. and T. Sato, Simulations on lower hybrid drift instability and anomalous resistivity in the magnetic neutral sheet, J. Geophys. Res., 86, 5541–5552, 1981.

    Article  Google Scholar 

  19. Winske, D., Current-driven microinstabilities in a neutral sheet, Phys. Fluids, 24, 1069–1076, 1981.

    Article  Google Scholar 

  20. Yamada, M., H. Ji, S. Hsu, T. Carter, and R. Kulsrud, Experimental investigation of the neutral sheet profile during magnetic reconnection, Phys. Plasmas, 7, 1781–1787, 2000.

    Article  Google Scholar 

  21. Zhu, Z. and R. M. Winglee, Tearing instability, flux ropes, and the kinetic current sheet kink instability in the Earth’s magnetotail: A three-dimensional perspective from particle simulations, J. Geophys. Res., 101, 4885–4897, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ritoku Horiuchi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horiuchi, R., Pei, W. & Sato, T. Collisionless driven reconnection in an open system. Earth Planet Sp 53, 439–445 (2001). https://doi.org/10.1186/BF03353254

Download citation

Keywords

  • Current Sheet
  • Magnetic Reconnection
  • Current Layer
  • Magnetic Island
  • Downstream Boundary