Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Origin of resistivity in reconnection


Resistivity is believed to play an important role in reconnection leading to the distinction between resistive and collisionless reconnection. The former is treated in the Sweet-Parker model of long current sheets, and the Petschek model of a small resistive region. Both models in spite of their different dynamics attribute to the violation of the frozen-in condition in their diffusion regions due to the action of resistivity. In collisionless reconnection there is little consensus about the processes breaking the frozen-in condition. The question is whether anomalous processes generate sufficient resistivity or whether other processes free the particles from slavery by the magnetic field. In the present paper we review processes that may cause anomalous resistivity in collisionless current sheets. Our general conclusion is that in space plasma boundaries accessible to in situ spacecraft, wave levels have always been found to be high enough to explain the existence of large enough local diffusivity for igniting local reconnection. However, other processes might take place as well. Non-resistive reconnection can be caused by inertia or diamagnetism.


  1. Arzner, K. and M. Scholer, Magnetotail reconnection: simulation predictions on magnetic time series, Earth Planets Space, 53, this issue, 655–661, 2001.

  2. Bauer, T. M., W. Baumjohann, R. A. Treumann, and N. Sckopke, Low-frequency waves in the near-Earth plasma sheet, J. Geophys. Res., 100, 9605–9617, 1995.

  3. Baumjohann, W., R. A. Treumann, J. LaBelle, and R. R. Anderson, Average electric wave spectra across the plasma sheet and their relation to ion bulk speed, J. Geophys. Res., 94, 15221–15230, 1989.

  4. Baumjohann, W., R. A. Treumann, and J. LaBelle, Average electric wave spectra across the plasma sheet: Dependence on ion density and ion beta, J. Geophys. Res., 95, 3811–3817, 1990.

  5. Brizard, A. J., Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates, J. Plasma Phys., 41, 541–559, 1989.

  6. Brizard, A. J., Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations, Phys. Plasmas, 7, 4816–4822, 2000.

  7. Cai, H. J., D. Q. Ding, and L. C. Lee, Momentum transport near a magnetic X line in collisionless reconnection, J. Geophys. Res., 99, 35–42, 1994.

  8. Chen, L., Theory of plasma transport induced by low-frequency hydromagnetic waves, J. Geophys. Res., 104, 2421–2428, 1999.

  9. Cheng, C. Z., A kinetic-magnetohydrodynamic model for low-frequency phenomena, J. Geophys. Res., 96, 21259, 1991.

  10. Cheng, C. Z. and J. R. Johnson, A kinetic-fluid model, J. Geophys. Res., 104, 413, 1999.

  11. Davidson, R. C., Quasi-linear stabilization of lower-hybrid drift instability, Phys. Fluids, 21, 1375–1380, 1978.

  12. Drake, J. F., Magnetic reconnection: A kinetic treatment, in Physics of the Magnetopause, edited by P. Song, B. U. Ö. Sonnerup, M. F. Thomsen, Geophys. Monogr. 90, p. 155, American Geophys. Union, Washington, D.C., 1995.

  13. Drake, J. F., R. G. Kleva, and M. E. Mandt, The structure of thin current layers: Implications for magnetic reconnection, Phys. Rev. Lett., 73, 1251–1254, 1994.

  14. Dum, C. T., Anomalous heating by ion-sound turbulence, Phys. Fluids, 21, 945–969, 1978.

  15. Dum, C. T. and T. C. Dupree, Nonlinear stabilization of high-frequency instabilities in a magnetic field, Phys. Fluids, 13, 2064–2081, 1970.

  16. Frieman, E. A. and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids, 25, 502–508, 1982.

  17. Gray, P., M. K. Hudson, W. Lotko, and R. Bergmann, Decay of ion beam driven acoustic waves into ion holes, Geophys. Res. Lett., 18, 1675–1678, 1991.

  18. Hollweg, J. and H. Volk, New plasma instabilities in the solar wind, J. Geophys. Res., 75, 5297–5312, 1970.

  19. Horton, W. and Y.-H. Ichikawa, Chaos and Structures in Nonlinear Plasmas, 340 pp., World-Scientific, Singapore, 1996.

  20. Hoshino, M., A. Nishida, T. Yamamoto, and S. Kokubun, Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation?, Geophys. Res. Lett, 21, 2935–2938, 1994.

  21. Johnson, J. R. and C. Z. Cheng, Global structure of mirror modes in the magnetosheath, J. Geophys. Res., 102, 7179–7189, 1997.

  22. Kindel, J. F. and C. F. Kennel, Topside current instabilities, J. Geophys. Res., 76, 3055–3071, 1971.

  23. Krall, N. A. and P. C. Liewer, Low-frequency instabilities in magnetic pulses, Phys. Rev. A, 4, 2094–3003, 1971.

  24. Krall, N. A. and A. W. Trivelpiece, Principles of Plasma Physics, 673 pp., McGraw-Hill, New York, 1973.

  25. Liewer, P. C. and N. A. Krall, Self-consistent approach to anomalous resistivity applied to theta pinch experiments, Phys. Fluids, 16, 1953–1963, 1973.

  26. Lee, N. C. and G. K. Parks, Ponderomotive force in a nonisothermal plasma, Phys. Fluids, 31, 90–95, 1988.

  27. Lund, E. J., R. A. Treumann, and J. LaBelle, Quasi-thermal fluctuations in a beam-plasma system, Phys. Plasmas, 3, 1234–1240, 1996.

  28. Maggs, J. E., Coherent generation of VLF hiss, J. Geophys. Res., 81, 1707–1721, 1976.

  29. Maggs, J. E., Nonlinear evolution of the auroral electron beam, J. Geophys. Res., 94, 3631–3640, 1989.

  30. Meiss, D. A. and W. Horton, Jr., Drift-wave turbulence from a soliton gas, Phys. Rev. Lett, 48, 1362–1365, 1982.

  31. Newman, D. L., M. V. Goldman, and R. E. Ergun, Langmuir turbulence in moderately magnetized space plasmas, Phys. Plasmas, 1, 1691–1699, 1994.

  32. Pottelette, R. and R. A. Treumann, Impulsive broadband electrostatic noise in the cleft: A signature of dayside reconnection, J. Geophys. Res., 103, 9299–9307, 1998.

  33. Robinson, P. A., Nonlinear wave collapse and strong turbulence, Rev. Mod. Phys., 69, 507–573, 1997.

  34. Sagdeev, R. Z., Cooperative phenomena and shock waves in collisionless plasmas, Rev. Plasma Phys., 4, 23–91, 1966.

  35. Sagdeev, R. Z., The Oppenheimer Lecture: Critical problems in plasma physics, Rev. Mod. Phys., 51, 1–20, 1979.

  36. Shapiro, V. D., V. I. Shevchenko, G. I. Solov’ev, V. P. Kalinin, R. Bingham, R. Z. Sagdeev, M. Ashour-Abdalla, J. Dawson, and J. J. Su, Nonlinear evolution and collapse of lower-hybrid drift waves, Phys. Fluids B, 5, 3148–3162, 1993.

  37. Shay, M. A., J. F. Drake, B. N. Rogers, and R. E. Denton, The scaling of collisionless, magnetic reconnection for large systems, Geophys. Res. Lett, 26, 2163–2166, 1999.

  38. Tetreault, D., Theory of electric fields in the auroral acceleration region, J. Geophys. Res., 96, 3549–3561, 1991.

  39. Treumann, R. A. and W. Baumjohann, Advanced Space Plasma Physics, pp. 381, Imperial College Press, London, 1997.

  40. Treumann, R. A. and N. Sckopke, The collisionless mirror mode in the magnetosheath: A superconducting analogue, Eos Trans. AGU, 80, Fall Meet. Suppl., SM-237, 1999.

  41. Winske, D., V. Thomas, and S. P. Gary, Diffusion at the magnetopause: The theoretical perspective, in Physics of the Magnetopause, edited by P. Song, B. U. Ö. Sonnerup, M. F. Thomsen, Geophys. Monogr. 90, p. 337, American Geophys. Union, Washington, D.C., 1995.

Download references

Author information



Corresponding author

Correspondence to Rudolf A. Treumann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Treumann, R.A. Origin of resistivity in reconnection. Earth Planet Sp 53, 453–462 (2001).

Download citation


  • Collision Frequency
  • Plasma Sheet
  • Diffusion Region
  • Langmuir Wave
  • Ponderomotive Force