Skip to main content

Volume 53 Supplement 6

Special Issue: Magnetic Reconnection in Space and Laboratory Plasmas

Plasmoid-induced-reconnection and fractal reconnection

Abstract

As a key to understanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the induction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid ejection and acceleration are closely coupled with the reconnection process, leading to a nonlinear instability for the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current sheet tends to have a fractal structure via the following process path: tearing sheet thinning Sweet-Parker sheet secondary tearing further sheet thinning . These processes occur repeatedly at smaller scales until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented for fast reconnection in the solar corona on the basis of above plasmoid-induced-reconnection in a fractal current sheet.

References

  • Akiyama, S. and H. Hara, X-ray eruptive structures associated with small flares, Adv. Space Res., 26, 465–468, 2000.

    Article  Google Scholar 

  • Anzer, U. and G. W. Pneuman, Magnetic reconnection and coronal transients, Solar Phys., 79, 129–147, 1982.

    Article  Google Scholar 

  • Benz, A. O. and M. J. Aschwanden, Characteristics of the impulsive phase of flares, in Proc. Eruptive Solar Flares, IAU Colloq. No. 133, edited by Z. Svestka, B. V. Jackson, and M. E. Machado, Lecture Notes in Physics 399, Springer-Verlag, Berlin, pp. 106–115, 1992.

    Chapter  Google Scholar 

  • Biskamp, D., Magnetic reconnection via current sheets, Phys. Fluids, 29, 1520–1531, 1986.

    Article  Google Scholar 

  • Biskamp, D., Nonlinear Magnetohydrodynamics, 392 pp., Cambridge Univ. Press, 1992.

  • Biskamp, D. and H. Welter, Magnetic arcade evolution and instability, Solar Phys., 120, 49–77, 1989.

    Article  Google Scholar 

  • Carmichael, H., A process for flares, in Proc. AAS-NASA Symp. on the Physics of Solar Flares, edited by W. N. Hess, Washington, NASA, NASA-SP 50, pp. 451–456, 1964.

    Google Scholar 

  • Chen, P. F., K. Shibata, and T. Yokoyama, Global destabilization due to localized reconnection: a mechanism for coronal mass ejections, Earth Planets Space, 53, this issue, 611–614, 2001.

    Article  Google Scholar 

  • Cheng, C. Z. and G. S. Choe, Solar flare mechanism based on magnetic arcade reconnection and island merging, Earth Planets Space, 53, this issue, 597–604, 2001.

    Article  Google Scholar 

  • Choe, G. S. and L. Lee, Evolution of solar magnetic arcades. I. Ideal MHD evolution under footpoint shearing, ApJ, 472, 360–371, 1996.

    Article  Google Scholar 

  • Choe, G. S. and C. Z. Cheng, A model of solar flares and their homologous behavior, ApJ, 541, 449–467, 2000.

    Article  Google Scholar 

  • Dere, K., G. E. Brueckner, R. A. Howard, D. J. Michels, and J. P. Delaboudiniere, LASCO and EIT observations of helical structure in coronal mass ejections, ApJ, 516, 465–474, 1999.

    Article  Google Scholar 

  • Drake, J., private communication, 2000.

  • Forbes, T. G., Numerical simulation of a catastrophe model for coronal mass ejections, J. Geophys. Res., 95, 11919–11931, 1990.

    Article  Google Scholar 

  • Forbes, T. G. and L. Acton, Reconnection and field line shrinkage in solar flares, ApJ, 459, 330–341, 1996.

    Article  Google Scholar 

  • Hanaoka, Y., H. Kurokawa, S. Enome et al., Simultaneous observations of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and H alpha, PASJ, 46, 205–216, 1994.

    Google Scholar 

  • Heyvaerts, J., E. R. Priest, and D. Rust, An emerging flux model for the solar flare phenomenon, ApJ, 216, 123–137, 1977.

    Article  Google Scholar 

  • Hirayama, T., Theoretical model of flares and prominences, I. Evaporating flare model, Solar Phys., 34, 323–338, 1974.

    Article  Google Scholar 

  • Hirayama, T., Magnetic morphologies of solar flares, in Lecture Note in Physics, No. 387, Flare Physics in Solar Activity Maximum 22, edited by Y. Uchida et al., pp. 197–201, Springer, New York, 1991.

    Chapter  Google Scholar 

  • Horiuchi, R., W. Pei, and T. Sato, Collisionless driven reconnection in an open system, Earth Planets Space, 53, this issue, 439–445, 2001.

    Article  Google Scholar 

  • Hoshino, M., K. Hiraide, and T. Mukai, Strong electron heating and non-Maxwellian behavior in magnetic reconnection, Earth Planets Space, 53, this issue, 627–634, 2001.

    Article  Google Scholar 

  • Hundhausen, A., Coronal mass ejections, in The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, edited by K. T. Strong, J. L. R. Saba, B. M. Haisch, and J. T. Schmelz, pp. 143–200, Springer, New York, 1999.

    Chapter  Google Scholar 

  • Ichimaru, S., Electrical resistivity of electromagnetically turbulent plasma and reconnection rate of magnetic fields, ApJ, 202, 524–531, 1975.

    Article  Google Scholar 

  • Kahler, S. W., R. L. Moore, S. R. Kane, and H. Zirin, Filament eruptions and the impulsive phase of solar flares, ApJ, 328, 824–829, 1988.

    Article  Google Scholar 

  • Kitabata, H., T. Hayashi, T. Sato et al., Impulsive nature in magnetohydrodynamic driven reconnection, J. Phys. Soc. Japan, 65, 3208–3214, 1996.

    Article  Google Scholar 

  • Kopp, R. A. and G. W. Pneuman, Magnetic reconnection in the corona and the loop prominence phenomenon, Solar Phys., 50, 85–98, 1976.

    Article  Google Scholar 

  • Kusano, K., Y. Suzuki, and K. Nishikawa, A solar flare triggering mechanism based on the Woltjer-Taylor minimum energy principle, ApJ, 441, 942–951, 1995.

    Article  Google Scholar 

  • Lee, L. C. and Z. F. Fu, Multiple X line reconnection, I. A criterion for the transition from a single X line to a multiple X line reconnection, J. Geophys. Res., 91, 6807–6815, 1986.

    Article  Google Scholar 

  • Lin, J. and T. G. Forbes, Effects of reconnection on the coronal mass ejection process, J. Geophys. Res., 105, 2375–2392, 2000.

    Article  Google Scholar 

  • Magara, T., K. Shibata, and T. Yokoyama, Evolution of eruptive flares. I. Plasmoid dynamics in eruptive flares, ApJ, 487, 437–446, 1997.

    Article  Google Scholar 

  • Magara, T. and K. Shibata, Evolution of eruptive flares. II. The occurrence of locally enhanced resistivity, ApJ, 514, 456–471, 1999.

    Article  Google Scholar 

  • Masuda, S., T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature, 371, 495–496, 1994.

    Article  Google Scholar 

  • Mikic, Z., D. C. Barnes, and D. D. Schnack, Dynamical evolution of a solar coronal magnetic field arcade, ApJ, 328, 830–847, 1988.

    Article  Google Scholar 

  • Moore, R. L. and G. Roumeliotis, Triggering of eruptive flares: destabilization of the preflare magnetic field configuration, in Lecture Note in Physics, No. 399, Eruptive Flares, edited by Z. Svestka, B. V. Jackson, and M. E. Machado, pp. 69–78, Springer, New York, 1992.

    Google Scholar 

  • Morimoto, T. and H. Kurokawa, private communication, 2000.

  • Nitta, S., S. Tanuma, K. Maezawa, and K. Shibata, Fast magnetic reconnection in free space: self-similar evolution process, ApJ, 550, 1119–1130, 2001.

    Article  Google Scholar 

  • Nitta, N., A study of major solar flares observed by Yohkoh, in Magnetic Reconnection in the Solar Atmosphere, ASP Conference Series; Vol. 111, edited by R. D. Bentley and J. T. Mariska (1997), pp. 156–161, 1996.

  • Ohyama, M. and K. Shibata, Preflare heating and mass motion in a solar flare associated with hot plasma ejection: 1993 November 11 C9.7 flare, PASJ, 49, 249–261, 1997.

    Google Scholar 

  • Ohyama, M. and K. Shibata, X-ray plasma ejection associated with an impulsive flare on 1992 October 5: physical conditions of X-ray plasma ejection, ApJ, 499, 934–944, 1998.

    Article  Google Scholar 

  • Ohyama, M. and K. Shibata, Timing and occurrence rate of X-ray plasma ejections, JASTP, 62, 1509–1514, 2000.

    Google Scholar 

  • Ono, Y., M. Inomoto, Y. Ueda, T. Matsuyama, and Y. Murata, Fast compression of a current sheet during externally driven magnetic reconnection, Earth Planets Space, 53, this issue, 521–526, 2001.

  • Priest, E. R., C. E. Parnel, and S. F. Martin, A converging flux model of an X-ray bright point and an associated canceling magnetic feature, ApJ, 427, 459–474, 1994.

    Article  Google Scholar 

  • Scholer, M., Undriven magnetic reconnection in an isolated current sheet, J. Geophys. Res., 94, 8805–8812, 1989.

    Article  Google Scholar 

  • Schumacher, J. and B. Kliem, Dynamic current sheets with localized anomalous resistivity, Phys. Plasmas, 3, 4703–4711, 1996.

    Article  Google Scholar 

  • Shibata, K., S. Nozawa, and R. Matsumoto, Magnetic reconnection associated with emerging magnetic flux, PASJ, 44, 265–271, 1992.

    Google Scholar 

  • Shibata, K., S. Masuda, M. Shimojo, H. Hara et al., Hot plasma ejections associated with compact-loop solar flares, Ap. J. Lett., 451, L83-L85, 1995.

    Article  Google Scholar 

  • Shibata, K., New observational facts about solar flares from Yohkoh studies—Evidence of magnetic reconnection and a unified model of flares, Adv. Space Res., 17, (4/5)9-18, 1996.

    Article  Google Scholar 

  • Shibata, K., Rapidly time variable phenomena: Jets, explosive events, and flares, 1997, in Proc. 5-th SOHO workshop, ESA, SP-404, pp. 103–112, 1997.

    Google Scholar 

  • Shibata, K., A unified model of flares, in Proc. Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, edited by T. Watanabe et al., pp. 187–196, 1998.

    Chapter  Google Scholar 

  • Shibata, K., Evidence of magnetic reconnection in solar flares and a unified model of flares, Astrophys. Sp. Sci., 264, 129–144, 1999.

    Article  Google Scholar 

  • Simnett, G. M., S. J. Tappin, S. P. Plunkett, D. K. Beaford et al., LASCO observations of disconnected magnetic structures out to beyond 28 solar radii during coronal mass ejections, Solar Phys., 175, 685–698, 1997.

    Article  Google Scholar 

  • Sonnerup, B. U. O. and J.-I. Sakai, Stability of a current sheet with resistive MHD stagnation point flows, EOS Trans. Amer. Geophys. Union, 62, 353 (abstract), 1981.

  • Sturrock, P. A., Model of the high energy phase of solar flares, Nature, 211, 695–697, 1966.

    Article  Google Scholar 

  • Tajima, T. and K. Shibata, Plasma Astrophysics, p. 494, Addison-Wesley, Reading, 1997.

    Google Scholar 

  • Tanaka, M., The origins of electrical resistivity in magnetic reconnection: Studies by 2D and 3D macro particle simulations, Earth Planets Space, 53, this issue, 463–472, 2001.

    Article  Google Scholar 

  • Tanuma, S., T. Yokoyama, T. Kudoh, R. Matsumoto, K. Shibata, and K. Makishima, Magnetic reconnection as the origin of galactic-ridge X-ray emission, PASJ, 51, 161–172, 1999.

    Google Scholar 

  • Tanuma, S., T. Yokoyama, T. Kudoh, and K. Shibata, Two-dimensional MHD numerical simulations of magnetic reconnection triggered by a supernova shock in interstellar medium: generation of X-ray gas in galaxy, ApJ, 551, 312–332, 2001.

    Article  Google Scholar 

  • Treumann, R. A. and W. Baumjohann, Advanced Space Plasma Physics, 381 pp., Imperial College, London, 1997.

    Book  Google Scholar 

  • Tsuneta, S., H. Hara, T. Shimizu, L. Acton et al., Observation of a solar flare at the limb with the YOHKOH soft X-ray telescope, PASJ, 44, L63–L69, 1992a.

    Google Scholar 

  • Tsuneta, S., T. Takahashi, L. Acton, M. Bruner et al., Global restructuring of the coronal magnetic fields observed with the YOHKOH soft X-ray telescope, PASJ, 44, L211–214, 1992b.

    Google Scholar 

  • Tsuneta, S., Moving plasmoid and formation of the neutral sheet in a solar flare, ApJ, 483, 507–514, 1997.

    Article  Google Scholar 

  • Ugai, M., Spontaneously developing magnetic reconnections in a current-sheet system under different sets of boundary conditions, Phys. Fluids, 25, 1027–1037, 1982.

    Article  Google Scholar 

  • Ugai, M., Global dynamics and rapid collapse of an isolated current-sheet system enclosed by free boundaries, Phys. Fluids, 29, 3659–3667, 1986.

    Article  Google Scholar 

  • Ugai, M., Computer studies on development of the fast reconnection mechanism for different resistivity models, Phys. Fluids B, 4, 2953–2963, 1992.

    Article  Google Scholar 

  • Yan, M., L. Lee, and E. R. Priest, Fast magnetic reconnection with small shock angles, J. Geophys. Res., 98, 8277–8293, 1992.

    Article  Google Scholar 

  • Yokoyama, T. and K. Shibata, What is the condition for fast magnetic reconnection?, ApJ, 436, L197–L200, 1994.

    Article  Google Scholar 

  • Yokoyama, T. and K. Shibata, Magnetic reconnection as the origin of X-ray jets and H-alpha surges on the Sun, Nature, 375, 42–44, 1995.

    Article  Google Scholar 

  • Yokoyama, T. and K. Shibata, Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on magnetic reconnection model, ApJ, 549, 1160–1174, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Shibata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shibata, K., Tanuma, S. Plasmoid-induced-reconnection and fractal reconnection. Earth Planet Sp 53, 473–482 (2001). https://doi.org/10.1186/BF03353258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353258

Keywords

  • Current Sheet
  • Coronal Mass Ejection
  • Magnetic Reconnection
  • Reconnection Process
  • Magnetic Island