Skip to main content

Spheromaks, solar prominences, and Alfvén instability of current sheets

Abstract

Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experimental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vacuum chamber. The spheromak is formed without a flux conserver and internal λ profiles have been measured. Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar prominences. The physics of these structures is closely related to spheromaks (low β, force-free, relaxed state equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics of collisionless reconnection.

References

  1. Arzimovich, L. A., Elementary Plasma Physics, 188 pp., Blaisdell Publishing, New York, 1965.

    Google Scholar 

  2. Axford, W. I. and J. F. McKenzie, The origin of high speed solar wind streams, in Solar Wind Seven, COSPAR Colloquia Series, Vol. 3, edited by E. Marsch and R. Schwenn, 711 pp., Pergamon Press, 1992.

  3. Bateman, G., MHD Instabilities, 263 pp., MIT Press, Boston, 1978.

    Google Scholar 

  4. Bellan, P. M., New model for ULF Pc5 pulsations: Alfven cones, Geophys. Res. Lett., 23, 1717–1720, 1996.

    Article  Google Scholar 

  5. Bellan, P. M., Collisionless reconnection using Alfven wave radiation resistance, Phys. Plasmas, 5, 3081–3088, 1998.

    Article  Google Scholar 

  6. Bellan, P. M., Alfven wave instability of current sheets in force-free collisionless plasmas, Phys. Rev. Lett., 83, 4768–4771, 1999.

    Article  Google Scholar 

  7. Bellan, P. M., Spheromaks, 341 pp., Imperial College Press, London, 2000.

    Google Scholar 

  8. Bellan, P. M., Alfven wave instability of current sheets in force-free plasmas: Comparison to ion acoustic instability, Advances in Space Research (in press).

  9. Bellan, P. M. and J. F. Hansen, Laboratory simulations of solar prominence eruptions, Phys. Plasmas, 5(2), 1991–2000, 1998.

    Article  Google Scholar 

  10. Bhattacharjee, A., Z. W. Ma, and X. G. Wang, Impulsive reconnection dynamics in collisionless laboratory and space plasmas, J. Geophys. Res., 104, 14543–14556, 1999.

    Article  Google Scholar 

  11. Biskamp, D., Nonlinear Magnetohyrodynamics, 378 pp., Cambridge University Press, 1993.

    Google Scholar 

  12. Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 338, 453–470, 1989.

    Article  Google Scholar 

  13. Drake, J. F., R. G. Kleva, and M. E. Mandt, Structure of thin current layers—implications for magnetic reconnection, Phys. Rev. Lett., 73, 1251–1254, 1994.

    Article  Google Scholar 

  14. Fernandez, J. C., B. L. Wright, G. J. Marklin, D. A. Platts, and T. R. Jarboe, The m = 1 helicity source spheromak experiment, Phys. Fluids B, 1, 1254–1270, 1989.

    Article  Google Scholar 

  15. Freidberg, J. P., Ideal Magnetohydrodynamics, 489 pp., Plenum Press, New York, 1987.

    Google Scholar 

  16. Furth, H. P., Compact Tori, Nucl. Instrum. Methods, 207, 93–110, 1983.

    Article  Google Scholar 

  17. Furth, H. P., J. Killeen, and M. N. Rosenbluth, Finite-resistivity instabilities of a sheet pinch, Phys. Fluids, 6, 459–484, 1963.

    Article  Google Scholar 

  18. Gekelman, W. and R. L. Stenzel, Magnetic-field line reconnection experiments. 6. Magnetic turbulence, J. Geophys. Res., 89, 2715–2733, 1984.

    Article  Google Scholar 

  19. Goldston, R. J. and P. H. Rutherford, Introduction to Plasma Physics, 491 pp., Institute of Physics Publishing, Bristol, 1995.

    Google Scholar 

  20. Hansen, J. F. and P. M. Bellan, Experimental demonstration of how strapping fields can inhibit solar prominence eruptions, Astrophys. J. Lett. (submitted).

  21. Jarboe, T. R., Review of spheromak research, Plasma Phys. Controlled Fusion, 36, 945–990, 1994.

    Article  Google Scholar 

  22. Jarboe, T. R., C. W. Barnes, D. A. Platts, and B. L. Wright, A kinked Z-pinch as the helicity source for spheromak generation and sustainment, Comments Plasma Phys. Controlled Fusion, 9, 161–168, 1985.

    Google Scholar 

  23. Jensen, T. H. and M. S. Chu, Current drive and helicity injection, Phys. Fluids, 27, 2881–2885, 1984.

    Article  Google Scholar 

  24. Krall, J., J. Chen, and R. Santoro, Drive mechanisms of erupting solar magnetic flux ropes, Astrophys. J., 539(1), 964–982, 2000.

    Article  Google Scholar 

  25. Longbottom, A. W., G. J. Rickard, I. J. D. Craig, and A. D. Sneyd, Magnetic flux braiding: Force-free equilibria and current sheets, Astrophys. J., 500, 471–482, 1998.

    Article  Google Scholar 

  26. Lundquist, S., Magneto-hydrostatic fields, Arkiv for Fysik, B2, 361–365, 1950.

    Google Scholar 

  27. Mayo, R. M., J. C. Fernandez, I. Henins, L. S. Kirschenbaum, C. P. Munson, and F. J. Wysocki, Time of flight measurement of ion temperatures in spheromaks, Nucl. Fusion, 31, 2087–2095, 1991.

    Article  Google Scholar 

  28. Miyamoto, K., Plasma Physics for Nuclear Fusion, 618 pp., revised English edition, MIT Press, Boston, 1989.

    Google Scholar 

  29. Ono, Y., M. Yamada, T. Akao, T. Tajima, and R. Matsumoto, Ion acceleration and direct ion heating in three-component magnetic reconnection, Phys. Rev. Lett., 76, 3328–3331, 1996.

    Article  Google Scholar 

  30. Parker, E. N., Magnetic neutral sheets in evolving fields. 1. General theory, Astrophys. J., 264, 635–641, 1983.

    Article  Google Scholar 

  31. Stasiewicz, K., P. Bellan, C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhotelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov, and J.-E. Wahlund, Small scale Alfvenic structure in the aurora, Space Sci. Reviews, 92, 423–533, 2000.

    Article  Google Scholar 

  32. Tandberg-Hanssen, E., The Nature of Solar Prominences, 308 pp., Kluwer, Dordrecht, 1995.

    Google Scholar 

  33. Taylor, J. B., Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett., 33, 1139–1141, 1974.

    Article  Google Scholar 

  34. Turner, W. C., G. C. Goldenbaum, E. H. A. Granneman, J. H. Hammer, C. W. Hartman, D. S. Prono, and J. Taska, Investigations of the magnetic structure and decay of a plasma-gun-generated compact torus, Phys. Fluids, 26, 1965–1986, 1983.

    Article  Google Scholar 

  35. Yamada, M., H. T. Ji, S. Hsu, T. Carter, R. Kulsrud, and F. Trintchouk, Experimental investigation of the neutral sheet profile during magnetic reconnection, Phys. Plasmas, 7(2), 1781–1787, 2000.

    Article  Google Scholar 

  36. Yee, J. and P. M. Bellan, Taylor relaxation and lambda decay of unbounded, freely expanding spheromaks, Phys. Plasmas, 7, 3625–3640, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. M. Bellan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellan, P.M., Yee, J. & Hansen, J.F. Spheromaks, solar prominences, and Alfvén instability of current sheets. Earth Planet Sp 53, 495–499 (2001). https://doi.org/10.1186/BF03353261

Download citation

Keywords

  • Current Sheet
  • Magnetic Reconnection
  • Magnetic Helicity
  • High Speed Solar Wind
  • Solar Prominence