Skip to main content

Review of the recent controlled experiments for study of local reconnection physics

Abstract

The present paper reviews the recent laboratory experiments on magnetic reconnection focussing on the local features of the reconnection region. It is very important to recognize that magnetohydrodynamics (MHD) often breaks down locally in the thin reconnection layer, while globally, the reconnecting plasma has large Lundquist number and is well approximated by MHD equations. Precise measurements of the neutral sheet profile can provide important clues to help understand the non-MHD physics mechanisms of reconnection. Thanks to significant progress in data acquisition technology, the detailed magnetic field structure of the neutral sheet has been measured in laboratory plasmas. Extensive data have been accumulated in highly conductive MHD plasmas with large Lundquist numbers S = 10–1000. In this review we primarily focus on the physics data of the neutral sheet from the most recent laboratory experiments.

References

  1. Baum, P. J. and A. Bratenahl, Magnetic reconnection experiments, Adv. Electron Phys., 54, 1–67, 1980, reference there in.

    Article  Google Scholar 

  2. Biskamp, D., E., Schwarz, and J. F. Drake, Ion controlled magnetic reconnection, Phys. Rev. Lett., 75, 3850–3853, 1995.

    Article  Google Scholar 

  3. Brown, M. R., Experimental studies of Magnetic reconnection, Phys. Plasmas, 6, 1717–1724, 1999.

    Article  Google Scholar 

  4. Carter, T. et al., AGU 2000 Spring Meeting EOS, Supplement, S360, 2000.

  5. Drake, J. F., R. G. Kleva, and M. E. Mandt, Structure of thin current layers: Implication for magnetic reconnection, Phys. Rev. Lett., 73, 1251–1254, 1994.

    Article  Google Scholar 

  6. Drake, J. F. et al., Geophys. Res. Lett., 24, 2921–2924, 1997.

    Article  Google Scholar 

  7. Egedal, J. and A. Fasoli, to be published, 2001.

  8. Frank, A. G., Proc. Lebedev Phys. Inst. 74: 108, 1974.

    Google Scholar 

  9. Gekelman, W. and R. L. Stenzel, Magnetic field line reconnection experiments, J. Geophys. Res., 86, 659–666, 1981, JGR, 87, 101–110, 1982, JGR, 89, 2715–2733, 1984.

    Article  Google Scholar 

  10. Gekelman, W. and H. Pfister, Experimental observations of the tearing of an electron current sheet, Phys. Fluids, 31, 2017, 1988.

    Article  Google Scholar 

  11. Harris, E. G., Nuovo Cimento, 23, 115, 1962.

    Article  Google Scholar 

  12. Horiuch, H. and T. Sato, Particle simulation study of collisionless driven reconnection in a sheared magnetic field, Phys. Plasmas, 4, 277, 1997.

    Article  Google Scholar 

  13. Hsu, S. et al., Local measurement of non-classical ion heating during magnetic reconnection, Phys. Rev. Lett., 84, 3859–3862, 2000.

    Article  Google Scholar 

  14. Ji, H. et al., Experimental test of the Sweet-Parker model of magnetic reconnection, Phys. Rev. Lett., 80, 3256–3259, 1998.

    Article  Google Scholar 

  15. Ji, H., et al., Magnetic reconnection with Sweet-Parker characteristics in 2-D laboratory plasmas, Phys. Plasmas, 6, 1743–1749, 1999.

    Article  Google Scholar 

  16. Ji, H., T. Carter, S. Hsu, and M. Yamada, Study of local reconnection physics in a laboratory plasma, Earth Planets Space, 53, this issue, 539–545, 2001.

    Article  Google Scholar 

  17. Kivelson, G. and C. T. Russell, Introduction to Space Physics, Cambridge University Press, London, 1995.

    Google Scholar 

  18. Kornack, T. W. et al., Experimental observation of correlated magnetic reconnection and Alfvenic ion jet, Phys. Rev. E, 58, R36–R39, 1998.

    Article  Google Scholar 

  19. Kulsrud, R., Magnetic reconnection in an MHD plasma, Phys. Plasmas, 5, 1599–1606, 1998.

    Article  Google Scholar 

  20. Ohyabu, N. et al., Strong ion heating in a magnetic neutral point discharge, Phys. Fluids, 17, 2009–2013, 1974.

    Article  Google Scholar 

  21. Ono, Y. et al., Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks, Phys. Fluids B, 5, 3691–3701, 1993.

    Article  Google Scholar 

  22. Ono, Y. et al., Experimental investigation of three-component magnetic reconnection by use of merging spheromaks and tokamaks, Phys. Plasmas, 4, 1953–1963, 1997.

    Article  Google Scholar 

  23. Ono, Y. et al., Ion acceleration and direct ion heating in three component magnetic reconnection, Phys. Rev. Lett., 76, 3328–3331, 1996.

    Article  Google Scholar 

  24. Parker, E. N., Sweet’s mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., 62, 509, 1957.

    Article  Google Scholar 

  25. Parker, E. N., Cosmical Magnetic Fields, Oxford, Claredon Press, 1979.

    Google Scholar 

  26. Parker, E. N., The reconnection rate of magnetic fields, Astrophys. J., 180, 247–252, 1973.

    Article  Google Scholar 

  27. Petschek, H. E., Magnetic field annihilation, NASA Spec. Pub. SP-50, 425, 1964.

    Google Scholar 

  28. Priest, E. R. and T. Forbes, Magnetic reconnection, Cambridge Univ. Press, Cambridge, U.K., 2000.

    Google Scholar 

  29. Sato, T. and T. Hayashi, Externally driven magnetic reconnection and powerful magnetic energy converter, Phys. Fluids, 22, 1189–1202, 1979.

    Article  Google Scholar 

  30. Shay, M. A. et al., Structure of dissipation region during magnetic reconnection, J. Geophys. Res., 103, 9165–9176, 1998.

    Article  Google Scholar 

  31. Stenzel, R. L. and W. Gekelman, Magnetic field line reconnection experiments I. Field topologies, J. Geophys. Res., 86, 649–658, 1981.

    Article  Google Scholar 

  32. Stenzel, R. L. et al., Magnetic field line reconnection experiments 4, J. Geophys. Res., 87, 111–117, 1982.

    Article  Google Scholar 

  33. Stenzel, R. L., W. Gekelman, and N. Wild, Magnetic field line reconnection experiments 5. Current disruptions and double layers, J. Geophys. Res., 88, 4793–4804, 1983.

    Article  Google Scholar 

  34. Sweet, P. A., The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert, p. 123, Cambridge Press, New York, 1958.

    Google Scholar 

  35. Syrovatskii, S. I. et al., Current distribution near the null line of magnetic field and turbulent plasma resistance, Sov. Phys. Tech. Phys. Engl. Tran., 18, 580, 1973.

    Google Scholar 

  36. Syrovatskii, S. I., Pinch sheets and reconnection in astrophysics, Ann. Rev. Astron. Astrophys., 19, 163, 1981, and references there in.

    Article  Google Scholar 

  37. Yamada, M. et al., Magnetic reconnection of plasma toroids with co- and counter-helicity, Phys. Rev. Lett., 65, 721–724, 1990.

    Article  Google Scholar 

  38. Yamada, M. et al., Identification of Y-shaped and O-shaped diffusion regions during magnetic reconnection in a laboratory plasma, Phys. Rev. Lett., 78, 3117–3120, 1997a.

    Article  Google Scholar 

  39. Yamada, M. et al., Study of driven magnetic reconnection in a laboratory plasma, Phys. Plasmas, 4, 1936–1944, 1997b.

    Article  Google Scholar 

  40. Yamada, M. et al., Experimental investigation of the neutral sheet profile during magnetic reconnection, Phys. Plasmas, 7, 1781–1787, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masaaki Yamada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamada, M. Review of the recent controlled experiments for study of local reconnection physics. Earth Planet Sp 53, 509–519 (2001). https://doi.org/10.1186/BF03353263

Download citation

Keywords

  • Current Sheet
  • Magnetic Reconnection
  • Whistler Wave
  • Reconnection Rate
  • Neutral Sheet