Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Study of local reconnection physics in a laboratory plasma

Abstract

A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional (2D) current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift like waves with significant magnetic components. The detailed structures of current sheet are measured and compared with Harris theory and two-fluid theory.

References

  1. Biskamp, D., Magnetic reconnection via current sheets, Phys. Fluids, 29, 1520–1531, 1986.

    Article  Google Scholar 

  2. Biskamp, D., Magnetic reconnection, Physics Reports, 237, 179–247, 1994.

    Article  Google Scholar 

  3. Braginskii, S. I., Transport processes in a plasma, in Reviews of Plasma Physics Vol. 1, edited by M. A. Leontovich, 205 pp., Consultants Bureau, New York, 1965.

    Google Scholar 

  4. Carter, T., et al., Measurements of lower-hybrid-drift turbulence in a reconnecting current sheet, Bull. Am. Phys. Soc., 45, 270, 2000; to be submitted to Phys. Rev. Lett.

    Google Scholar 

  5. Dungey, J. W., Interplanetary magnetic field and auroral zones, Phys. Rev. Lett., 6, 47–48, 1961.

    Article  Google Scholar 

  6. Ejiri, A. and K. Miyamoto, Ion-heating model during magnetic reconnection in reversed-field pinch plasmas, Plasma Phys. Controll. Fusion, 37, 43–56, 1995.

    Article  Google Scholar 

  7. Fiksel, G., D. J. Den Hartog, and P. W. Fontana, An optical probe for local measurements of fast plasma ion dynamics, Rev. Sci. Instr., 69, 2024–2026, 1998.

    Article  Google Scholar 

  8. Harris, E. G., On a plasma sheath separating regions of oppositely directed magnetic field, Il Nuovo Cimento, 23, 115–121, 1962.

    Article  Google Scholar 

  9. Hsu, S. C., et al., Local measurement of nonclassical ion heating during magnetic reconnection, Phys. Rev. Lett., 84, 3859–3862, 2000.

    Article  Google Scholar 

  10. Hsu, S. C., et al., Experimental study of ion heating and acceleration during magnetic reconnection, Phys. Plasmas, 8, 1916–1928, 2001.

    Article  Google Scholar 

  11. Huba, J., et al., Lower-hybrid-drift instability as a source of anomalous resistivity for magnetic-field line reconnection, Geophys. Res. Lett., 4, 125, 1977.

    Google Scholar 

  12. Ji, H., et al., Probe measurements in the REPUTE-1 reversed field pinch, Rev. Sci. Instrum., 62, 2326–2337, 1991.

    Article  Google Scholar 

  13. Ji, H., et al., Experimental test of the Sweet-Parker model of magnetic reconnection, Phys. Rev. Lett., 80, 3256–3259, 1998.

    Article  Google Scholar 

  14. Ji, H., et al., Magnetic reconnection with Sweet-Parker characteristics in two-dimensional laboratory plasmas, Phys. Plasmas, 6, 1743–1750, 1999.

    Article  Google Scholar 

  15. Ji, H., et al., Study of electric and magnetic profiles of current sheet in magnetic reconnection experiment, Bull. Am. Phys. Soc., 45, 270, 2000 (to be submitted).

  16. Kornack, T. W., P. K. Sollins, and M. R. Brown, Experimental observation of correlated magnetic reconnection and Alfvenic ion jets, Phys. Rev. E, 58, R36–R39, 1998.

    Article  Google Scholar 

  17. Mahajan, S. M. and R. D. Hazeltine, Sheared-flow generalization of the Harris sheet, Phys. Plasmas, 7, 1287–1293, 2000.

    Article  Google Scholar 

  18. Ono, Y., et al., Ion acceleration and direct ion heating in three-component magnetic reconnection, Phys. Rev. Lett., 76, 3328–3331, 1996.

    Article  Google Scholar 

  19. Parker, E. N., Sweet’s mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., 62, 509–520, 1957.

    Article  Google Scholar 

  20. Petschek, H. E., Magnetic field annhilation, NASA Spec. Pub. SP-50, 425–439, 1964.

  21. Priest, E. R., et al., Nature of the heating mechanism for the diffuse solar corona, Nature, 393, 545–547, 1998.

    Article  Google Scholar 

  22. Spitzer, L., Jr., Physics of Fully Ionized Gases, 2nd Revised edition, p. 28, Interscience Publishers, New York, 1962.

    Google Scholar 

  23. Stenzel, R. L. and W. Gekelman, Magnetic-field line reconnection experiments 1. Field topologies, J. Geophys. Res., 86, 649–658, 1981.

    Article  Google Scholar 

  24. Stenzel, R. L., W. Gekelman, and N. Wild, Magnetic-field line reconnection experiments 4. Resistivity, Heating, and Energy-flow, J. Geophys. Res., 87, 111–117, 1982.

    Article  Google Scholar 

  25. Sweet, P. A., The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert, pp. 123–134, Cambridge University Press, New York, 1958.

    Google Scholar 

  26. Trintchouk, F., et al., Two-dimensional structure measurement in the magnetic reconnection experiment with planar laser-induced fluorescence, Bull. Am. Phys. Soc., 45, 270–271, 2000.

    Google Scholar 

  27. Vasyliunas, V. M., Theoretical models of magnetic field line merging, 1, Rev. Geophys. Space Phys., 13, 303–336, 1975.

    Article  Google Scholar 

  28. Yamada, M., Review of controlled laboratory experiments on physics of magnetic reconnection, J. Geophys. Res., 104, 14529–14541, 1999.

    Article  Google Scholar 

  29. Yamada, M., et al., Magnetic reconnection of plasma toroids with cohelicity and counterhelicity, Phys. Rev. Lett., 65, 721–724, 1990.

    Article  Google Scholar 

  30. Yamada, M., et al., Identification of Y-shaped and O-shaped diffusion regions during magnetic reconnection in a laboratory plasma, Phys. Rev. Lett., 78, 3117–3120, 1997a.

    Article  Google Scholar 

  31. Yamada, M., et al., Study of driven magnetic reconnection in a laboratory plasma, Phys. Plasmas, 4, 1936–1944, 1997b.

    Article  Google Scholar 

  32. Yamada, M., et al., Experimental investigation of the neutral sheet profile during magnetic reconnection, Phys. Plasmas, 5, 1781–1787, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hantao Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Carter, T., Hsu, S. et al. Study of local reconnection physics in a laboratory plasma. Earth Planet Sp 53, 539–545 (2001). https://doi.org/10.1186/BF03353267

Download citation

Keywords

  • Current Sheet
  • Magnetic Reconnection
  • Diffusion Region
  • Laboratory Plasma
  • Reconnection Rate