Skip to main content

Global destabilization due to localized reconnection: A mechanism for coronal mass ejections


Solar CMEs are large scale eruptive phenomena, while flux emergence is a local event on the Sun. Our numerical simulations show that two categories of reconnection-favored emerging flux can trigger the destabilization and the ejection of the filament (i.e., CME): within the filament channel or on the outer edge of the channel, which confirms recent important observations by Feynman and Martin (1995). In particular for the latter category, numerical results show that there is a critical amount for the emerging flux, below which the flux rope eruption cannot be triggered. Our numerical model, for the first time, provides a physical explanation for the observed correlation between CMEs and the reconnection-favored emerging flux.


  1. Chen, J. and D. A. Garren, Interplanetary magnetic clouds: Topology and driving mechanism, Geophys. Res. Lett., 20, 2319–2322, 1993.

    Article  Google Scholar 

  2. Chen, P. F. and K. Shibata, An emerging flux trigger mechanism for coronal mass ejections, ApJ, 545, 524–531, 2000.

    Article  Google Scholar 

  3. Chen, P. F., C. Fang, M. D. Ding, and Y. H. Tang, Flaring loop motion and a unified model for solar flares, ApJ, 520, 853–858, 1999.

    Article  Google Scholar 

  4. Datlowe, D. W., M. J. Elcan, and H. S. Hudson, OSO-7 observations of solar X-rays in the energy range 10–100 keV, Solar Phys., 39, 155–174, 1974.

    Article  Google Scholar 

  5. Feynman, J. and S. F. Martin, The initiation of coronal mass ejections by newly emerging magnetic flux, JGR, 100, 3355–3367, 1995.

    Article  Google Scholar 

  6. Forbes, T. G. and E. R. Priest, Photospheric magnetic field evolution and eruptive flares, ApJ, 446, 377–389, 1995.

    Article  Google Scholar 

  7. Harrison, R. A., P. W. Waggett, R. D. Bentley, K. J. H. Phillips, M. Bruner, M. Dryer, and G. M. Simnett, The X-ray signature of solar coronal mass, Solar Phys., 97, 387–400, 1985.

    Article  Google Scholar 

  8. Hu, Y. Q., A multistep implicit scheme for time-dependent 2-dimensional MHD flows, J. Comput. Phys., 84, 441–460, 1989.

    Article  Google Scholar 

  9. Hundhausen, A., The Many Faces of the Sun, edited by K. Strong, J. Saba, B. Haisch, and J. Schmelz, Berlin, Springer, pp. 143–200, 1999.

  10. Inhester, B., J. Birn, and M. Hesse, The evolution of line-tied coronal arcades including a converging footpoint motion, Solar Phys., 138, 257–281, 1992.

    Article  Google Scholar 

  11. Kuperus, M. and M. A. Raadu, The support of prominences formed in neutral sheets, A&A, 31, 189–193, 1974.

    Google Scholar 

  12. Low, B. C. and D. F. Smith, The free energies of partially open coronal magnetic fields, ApJ, 410, 412–425, 1993.

    Article  Google Scholar 

  13. Mikić, Z. and J. A. Linker, Disruption of coronal magnetic field arcades, ApJ, 430, 898–912, 1994.

    Article  Google Scholar 

  14. Shibata, K., S. Nozawa, and R. Matsumoto, Magnetic reconnection associated with emerging magnetic flux, PASJ, 44, 265–272, 1992.

    Google Scholar 

  15. Tajima, T. and K. Shibata, Plasma Astrophysics, Addison-Wesley, 1997.

  16. Wu, S. T. and W. P. Guo, Coronal Mass Ejections: Geophysical Monogr. 99, edited by N. Crooker, J. A. Joselyn, and J. Feynman, pp. 83–89, AGU, Washington, D.C., 1997.

  17. Yokoyama, T. and K. Shibata, Numerical simulation of solar coronal X-ray jets based on the magnetic reconnection model, PASJ, 48, 353–376, 1996.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. F. Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, P.F., Shibata, K. & Yokoyama, T. Global destabilization due to localized reconnection: A mechanism for coronal mass ejections. Earth Planet Sp 53, 611–614 (2001).

Download citation


  • Current Sheet
  • Coronal Mass Ejection
  • Outer Edge
  • Magnetic Reconnection
  • Flux Rope