Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

The onset of magnetic reconnection in the magnetotail

Abstract

This paper addresses the onset of collisionless magnetic reconnection in the tail of the Earth’s magnetosphere. The two-and-a-half-dimensional version of a fully electromagnetic particle-in-cell code is used to describe the pre- and post-onset dynamics of reconnection in thin current sheets in the magnetotail. The ion/electron mass ratio is set to 100. The simulation starts out from an apparently stable equilibrium configuration. Applying an external electric field, meant to be caused by magnetic flux transfer to the tail, leads to the formation of a thin current sheet in the center of the plasma sheet. This confirms earlier results obtains with fluid and hybrid-methods. In the thin sheet quasi-static force-balance leads to a substantial decrease of the north-south component of the magnetic field in the center of the sheet. This in turn causes the electrons to become significantly nongyrotropic, such that a tearing mode starts growing. Regarding the nonideal process that supports the electric field in the diffusion region, the simulation results are shown to be consistent with the notion that electron pressure anisotropies associated with the nongyrotropy generate the required diffusive electric fields. The destabilizing role of electron nongyrotropy is confirmed by a simplified analysis of the energy principle for two-dimensional collisionless plasmas.

References

  1. Angelopoulos, V., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J. Walker, H. Lühr, and G. Paschmann, Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97, 4027, 1992.

    Article  Google Scholar 

  2. Antiochos, S. K., C. R. DeVore, and J. A. Klimchuk, A model for solar coronal mass ejections, Astrophys. J., 510, 485, 1999.

    Article  Google Scholar 

  3. Atkinson, G., Field-line merging and slippage, Geophys. Res. Lett., 5, 465, 1978.

    Article  Google Scholar 

  4. Birn, J. and K. Schindler, Self-consistent theory of three-dimensional convection in the geomagnetic tail, J. Geophys. Res., 88, 6969, 1983.

    Article  Google Scholar 

  5. Birn, J., M. Hesse, and K. Schindler, Formation of thin current sheets in space plasmas, J. Geophys. Res., 103, 6843, 1998.

    Article  Google Scholar 

  6. Birn, J., J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett, GEM magnetic reconnection challenge, J. Geophys. Res., 106, 3715, 2001.

    Article  Google Scholar 

  7. Brueckner, G. E., Global Coronal Disturbances as the Source for the Low Latitude Solar Wind, Transactions AGU, SH72B-05, 1996.

  8. Cai, H. J. and L. C. Lee, The generalized Ohm’s law in collisionless magnetic reconnection, Phys. Plasmas, 4, 509, 1997.

    Article  Google Scholar 

  9. Cargill, P. A. and J. A. Klimchuk, A nanoflare explanation for the heating of coronal loops observed by Yohkoh, Astrophys. J., 478, 799, 1997.

    Article  Google Scholar 

  10. Goldstein, H. and K. Schindler, Large-scale collision-free instability of two-dimensional plasma sheets, Phys. Rev. Lett, 48, 1468, 1982.

    Article  Google Scholar 

  11. Gosling, J. T., J. Birn, and M. Hesse, Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events, Geophys. Res. Lett., 22, 869, 1995.

    Article  Google Scholar 

  12. Haerendel, G., On the potential role of field-aligned currents in solar physics, Proceedings of 21st ESLAB Symposium, Bolkesjø, Norway, European Space Agency, Paris, 1987.

    Google Scholar 

  13. Hesse, M. and J. Birn, Near- and mid-tail current flow during substorms: Small- and large-scale aspects of current disruption, in Magnetospheric Currents, Geophys. Monogr. Ser., edited by S. Ohtani, R. Lysak, and M. Hesse, p. 295, AGU, Washington, D.C., 2000.

    Google Scholar 

  14. Hesse, M. and D. Winske, Electron dissipation in collisionless magnetic reconnection, J. Geophys. Res., 103, 26479, 1998.

    Article  Google Scholar 

  15. Hesse, M., D. Winske, and M. M. Kuznetsova, Hybrid Modeling of collisionless reconnection in two-dimensional current sheets: Simulations, J. Geophys. Res., 100, 21815, 1995.

    Article  Google Scholar 

  16. Hesse, M., D. Winske, and J. Birn, On the ion scale structure of thin current sheets in the magnetotail, Phys. Scr., T74, 63, 1997.

    Article  Google Scholar 

  17. Hesse, M., K. Schindler, J. Birn, and M. Kuznetsova, The diffusion region in collisionless magnetic reconnection, Phys. Plasmas, 6, 1781, 1999.

    Article  Google Scholar 

  18. Hewett, D. W., G. E. Frances, and C. E. Max, New regimes of magnetic reconnection in collisionless plasma, Phys. Rev. Lett., 61, 893, 1988.

    Article  Google Scholar 

  19. Horiuchi, R. and T. Sato, Particle simulation study of driven magnetic re-connection in a collisionless plasma, Phys. Plasmas, 1, 3587, 1994.

    Article  Google Scholar 

  20. Horiuchi, R. and T. Sato, Particle simulation study of collisionless driven reconnection in a sheared magnetic field, Phys. Plasmas, 4, 277, 1997.

    Article  Google Scholar 

  21. Krauss-Varban, D. and N. Omidi, Large-scale hybrid simulations of the magnetotail during reconnection, Geophys. Res. Lett., 22, 3271, 1995.

    Article  Google Scholar 

  22. Kuznetsova, M. M., M. Hesse, and D. Winske, Hybrid Modeling of the tearing instability in collisionless two-dimensional current sheets: Linear Theory, J. Geophys. Res., 100, 21827, 1995.

    Article  Google Scholar 

  23. Kuznetsova, M., M. Hesse, and D. Winske, Kinetic quasi-viscous and bulk flow inertia effects in collisionless magnetotail reconnection, J. Geophys. Res., 103, 199, 1998.

    Article  Google Scholar 

  24. Langdon, A. B., On enforcing Gauss’ law in electromagnetic particle-in-cell codes, Comp. Phys. Comm., 70, 447, 1992.

    Article  Google Scholar 

  25. Lin, Y. and D. W. Swift, A two-dimensional hybrid simulation of the magnetotail reconnection layer, J. Geophys. Res., 101, 19859, 1996.

    Article  Google Scholar 

  26. Lottermoser, R.-F., M. Scholer, and A. P. Matthews, Ion kinetic effects in magnetic reconnection: Hybrid simulations, J. Geophys. Res., 103, 4547, 1998.

    Article  Google Scholar 

  27. McPherron, R. L., Magnetospheric substorms, Rev. Geophys., 17, 657, 1979.

    Article  Google Scholar 

  28. Nagai, T., et al., Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations, J. Geophys. Res., 103, 4419, 1998.

    Article  Google Scholar 

  29. Pellat, R., F. Coroniti, and P. Pritchett, Does ion tearing exist?, Geophys. Res. Lett., 18, 143, 1991.

    Article  Google Scholar 

  30. Paschmann, G., et al, Plasma acceleration at the earth’s magnetopause: Evidence for reconnection, Nature, 282, 243, 1979.

    Google Scholar 

  31. Priest, E. R., Magnetic reconnection at the sun, in Magnetic Reconnection in Space and Laboratory Plasmas, Geophys. Monogr. Ser., vol. 30, edited by E. W. Hones, p. 63, AGU, Washington, D.C., 1984.

    Google Scholar 

  32. Priest, E. R. and T. G. Forbes, Steady magnetic reconnection in three dimensions, Solar Phys., 119, 211, 1989.

    Article  Google Scholar 

  33. Pritchett, P. L., Effect of electron dynamics on collisionless reconnection in two-dimensional magnetotail equilibria, J. Geophys. Res., 99, 5935, 1994.

    Article  Google Scholar 

  34. Quest, K. B., H. Karimabadi, and M. Brittnacher, Consequences of particle conservation along a flux surface for magnetotail tearing, J. Geophys. Res., 101, 179, 1996.

    Article  Google Scholar 

  35. Schindler, K. and J. Birn, Magnetospheric physics, Phys. Reports, 47, 109, 1978.

    Article  Google Scholar 

  36. Schindler, K., D. Pfirsch, and H. Wobig, Stability of two-dimensional collison-free plasmas, Plasma Phys., 15, 1165, 1973.

    Article  Google Scholar 

  37. Shay, M. A., J. F. Drake, R. E. Denton, and D. Biskamp, Structure of the dissipation region during collisionless magnetic reconnection, J. Geophys. Res., 103, 9165, 1998a.

    Article  Google Scholar 

  38. Shay, M. A. and J. F. Drake, The role of electron dissipation on the rate of collisionless magnetic reconnection, Geophys. Res. Lett., 25, 3759, 1998b.

    Article  Google Scholar 

  39. Sonnerup, B. U. Ö., et al., Evidence for magnetic field reconnection at the earth’s magnetopause, J. Geophys. Res., 86, 10049, 1981.

    Google Scholar 

  40. Tanaka, M., Macro-particle simulations of collisionless magnetic reconnection, Phys. Plasmas, 2, 2920, 1995a.

    Article  Google Scholar 

  41. Tanaka, M., The macro-em particle simulation method and a study of collisionless magnetic reconnection, Comp. Phys. Comm., 87, 117, 1995b.

    Article  Google Scholar 

  42. Vasyliunas, V. M., Theoretical models of magnetic field line merging, 1, Rev. Geophys., 13, 303, 1975.

    Article  Google Scholar 

  43. Villasenor, J. and O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Comp. Phys. Comm., 69, 306, 1992.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Hesse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hesse, M., Schindler, K. The onset of magnetic reconnection in the magnetotail. Earth Planet Sp 53, 645–653 (2001). https://doi.org/10.1186/BF03353284

Download citation

Keywords

  • Current Sheet
  • Magnetic Reconnection
  • Plasma Sheet
  • Diffusion Region
  • Hybrid Simulation