Open Access

Fault low velocity zones deduced by trapped waves and their relation to earthquake rupture processes

Earth, Planets and Space201454:BF03353299

https://doi.org/10.1186/BF03353299

Received: 28 December 2001

Accepted: 26 June 2002

Published: 26 June 2014

Abstract

Detailed structures of fault low velocity zones (LVZ) have been studied by analyzing fault-zone trapped waves at various active faults. These studies demonstrate that widths of the fault LVZ are ranging from an order of 10 m to a few hundred meters. In order to evaluate the effect of fault LVZ on the earthquake rupture process, a model of the LVZ related to the plastic deformation around an edge of propagating earthquake rupture is proposed. In this study, earthquake rupture processes are regarded as Mode III crack propagation. The LVZ is identical to the fault damaged zone which is related to plastic deformation in the vicinity of the crack tip. The Mode III crack analysis gives a simple relationship between the width of the low velocity zone, the breakdown stress drop at the crack tip, and characteristic slip distance d0 in friction laws. The parameters applicable to the Nojima fault producing the 1995 Hyogo-ken Nanbu earthquake show that the breakdown stress drop is 10 times larger than the static stress drop and d0 is about 10 cm. These values are consistent with the value obtained by the other study for the Nojima fault so the present model is applicable for considering earthquake rupture within the damaged zone.