Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Seismic cycle on a strike-slip fault with rate- and state-dependent strength in an elastic layer overlying a viscoelastic half-space

Abstract

A numerical simulation of seismic cycles is performed using a two-dimensional model with a vertical strike-slip fault in an elastic layer overlying a Maxwellian viscoelastic half-space, where the frictional stress on the fault is assumed to obey a rate- and state-dependent friction law. Simulated seismic cycles in the viscoelastic Earth model are nearly the same as those in a uniform elastic half-space model. The simulated postseismic deformation on the Earth’s surface due to viscoelastic relaxation is significant for time duration comparable to the viscoelastic relaxation time following the occurrence of an earthquake, and after that the deformation due to aseismic sliding of the fault dominates over that due to viscoelastic relaxation.

References

  1. Blanpied, M. L., D. A. Lockner, and J. D. Byerlee, Frictional slip of granite at hydrothermal conditions, J. Geophys. Res., 100, 13045–13064, 1995.

    Article  Google Scholar 

  2. Blanpied, M. L., T. E. Tullis, and J. D. Weeks, Effects of slip, slip rate, and shear heating on the friction of granite, J. Geophys. Res., 103, 9691–9712, 1998.

    Article  Google Scholar 

  3. Bonafede, M., E. Boschi, and M. Dragoni, A dislocation model of microplate boundary ruptures in the presence of a viscoelastic asthenosphere, Geophys. J. Roy. Astr. Soc, 76, 515–529, 1984.

    Article  Google Scholar 

  4. Cohen, S. C., A multilayer model of time dependent deformation following an earthquake on a strike-slip fault, J. Geophys. Res., 87, 5409–5421, 1982.

    Article  Google Scholar 

  5. Deng, J., M. Gurnis, H. Kanamori, and E. Hauksson, Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake, Science, 282, 1689–1692, 1998.

    Article  Google Scholar 

  6. Dieterich, J. H., Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168, 1979.

    Article  Google Scholar 

  7. Donnellan, A. and G. A. Lyzenga, GPS observations of fault afterslip and upper crustal deformation following the Northridge earthquake, J. Geophys. Res., 103, 21285–21297, 1998.

    Article  Google Scholar 

  8. Heki, K., S. Miyazaki, and H. Tsuji, Silent fault slip following an interplate thrust earthquake at the Japan trench, Nature, 386, 595–598, 1997.

    Article  Google Scholar 

  9. Hirth, J. P. and J. Lothe, Theory of Dislocations, 2nd Ed., Krieger, Malabar, Florida, 1982.

    Google Scholar 

  10. Kato, N., Seismic cycle on a strike-slip fault with rate- and state-dependent strength in an elastic layer overlying a viscoelastic half-space, Programme and Abstracts 2001 Fall Meeting, Seismol. Soc. Japan, C73, 2001 (in Japanese).

  11. Kato, N. and T. Hirasawa, A numerical simulation of postseismic sliding on a plate boundary, Zisin, 50, 241–250, 1997 (in Japanese with English abstract).

    Google Scholar 

  12. Kato, N. and T. Hirasawa, A model for possible crustal deformation prior to a coming large interplate earthquake in the Tokai district, central Japan, Bull. Seismol. Soc. Am., 89, 1401–1417, 1999.

    Google Scholar 

  13. Kato, N. and T. E. Tullis, A composite rate- and state-dependent law for rock friction, Geophys. Res. Lett., 28, 1103–1106, 2001.

    Article  Google Scholar 

  14. Kato, N. and T. E. Tullis, Numerical simulation of seismic cycles with a composite rate- and state-dependent friction law, Bull. Seismol. Soc. Am., 2002 (submitted).

  15. Kenner, S. and P. Segall, Time-dependence of the stress shadowing effect and its relation to the structure of the lower crust, Geology, 27, 119–122, 1999.

    Article  Google Scholar 

  16. Li, V. C. and J. R. Rice, Crustal deformation in great earthquake cycles, J. Geophys. Res., 92, 11533–11551, 1987.

    Article  Google Scholar 

  17. Lisowski, M., J. C. Savage, and W. H. Prescott, The velocity field along the San Andreas fault in central and southern California, J. Geophys. Res., 96, 8369–8389, 1991.

    Article  Google Scholar 

  18. Marone, C. J., C. H. Scholz, and R. Bilham, On the mechanics of earthquake afterslip, J. Geophys. Res., 96, 8441–8452, 1991.

    Article  Google Scholar 

  19. Nur, A. and G. Mavco, Postseismic viscoelastic rebound, Science, 181, 204–206, 1974.

    Article  Google Scholar 

  20. Pollitz, F. F. and I. S. Sacks, Modeling of postseismic relaxation following the great 1857 earthquake, southern California, Bull. Seismol. Soc. Am., 82, 454–480, 1992.

    Google Scholar 

  21. Pollitz, F. F., R. Bürgmann, and P. Segall, Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake, J. Geophys. Res., 103, 26975–26992, 1998.

    Article  Google Scholar 

  22. Pollitz, F. F., G. Peltzer, and R. Bürgmann, Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake, J. Geophys. Res., 105, 8035–8054, 2000.

    Article  Google Scholar 

  23. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd Ed., Cambridge Univ. Press, New York, 1992.

    Google Scholar 

  24. Rice, J. R., Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98, 9885–9908, 1993.

    Article  Google Scholar 

  25. Ruina, A. L., Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359–10370, 1983.

    Article  Google Scholar 

  26. Savage, J. C., Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models, J. Geophys. Res., 95, 4873–4879, 1990.

    Article  Google Scholar 

  27. Savage, J. C. and W. H. Prescott, Asthenosphere readjustment and the earthquake cycle, J. Geophys. Res., 83, 3369–3376, 1978.

    Article  Google Scholar 

  28. Sieh, K., M. Stuiver, and D. Brillinger, A more precise chronology of earthquakes produced by the San Andreas fault in southern California, J. Geophys. Res., 94, 603–623, 1989.

    Article  Google Scholar 

  29. Singh, S. J. and S. Rani, Lithospheric deformation associated with two-dimensional strike-slip faulting, J. Phys. Earth, 42, 197–220, 1994.

    Article  Google Scholar 

  30. Stuart, W. D., Forecast model for great earthquakes at the Nankai trough subduction zone, Pure Appl. Geophys., 126, 619–641, 1988.

    Article  Google Scholar 

  31. Stuart, W. D. and T. E. Tullis, Fault model for preseismic deformation at Parkfield, California, J. Geophys. Res., 100, 24079–24099, 1995.

    Article  Google Scholar 

  32. Thatcher, W., Nonlinear strain buildup and the earthquake cycle on the San Andreas fault, J. Geophys. Res., 88, 5893–5902, 1983.

    Article  Google Scholar 

  33. Tse, S. T. and J. R. Rice, Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452–9472, 1986.

    Article  Google Scholar 

  34. Yagi, Y., M. Kikuchi, and T. Sagiya, Co-seismic slip, post-seismic slip, and aftershocks associated with two large earthquakes in 1996 in Hyuganada, Japan, Earth Planets Space, 53, 793–803, 2001.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Kato.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kato, N. Seismic cycle on a strike-slip fault with rate- and state-dependent strength in an elastic layer overlying a viscoelastic half-space. Earth Planet Sp 54, 1077–1083 (2002). https://doi.org/10.1186/BF03353305

Download citation

Keywords

  • Slip Rate
  • Elastic Layer
  • Seismogenic Zone
  • Viscoelastic Relaxation
  • Postseismic Deformation