Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Development of the Hatagawa Fault Zone clarified by geological and geochronological studies


The occurrence of mylonite and cataclasite, mineral assemblages of cataclasite, and the K-Ar ages of surrounding granitic rocks and dikes were studied to examine the possibility that the Hatagawa Fault Zone (HFZ), NE Japan was experienced under the conditions of the brittle-plastic transition. The Hatagawa Fault Zone is divided into three structural settings: mylonite zones with a sinistral sense of shear and a maximum thickness of 1 km, a cataclasite zone with a maximum thickness of about 100 m, and locally and sporadically developed small-scale shear zones. Occurrence of epidote and chlorite, lack of montmorillonite in cataclasite, and the coexistence of cataclasite and limestone mylonite suggest that the cataclasite was deformed at temperatures higher than 220°C. Crush zones in the mylonite near the cataclasite zone were recognized in one outcrop; they have a structure concordant with the surrounding mylonite and some fragments in them are dragged plastically. Granodiorite porphyry dikes near the HFZ intruding into cataclasite and mylonite with a sinistral sense of shear exhibit no deformational features. K-Ar ages of hornblende from host granitic rocks and from one granodiorite porphyry dike are 126 ± 6 to 95.7 ± 4.8 and 98.1 ± 2.5 Ma, respectively. These indicate that the fault activity gradually changed from mylonitization to cataclasis within 28 m.y., and suggest that the HFZ underwent a brittle-plastic transition during its activity.


  1. Dodson, M. H. and E. McClelland-Brown, Isotopic and palaeomagnetic evidence for rates of cooling, uplift and erosion, Geol. Soc. London Mem., 10, 315–325, 1985.

    Article  Google Scholar 

  2. Geological Survey of Japan, Geological map of Japan, 1:1,000,000 (3rd Ed.), 1992.

  3. Henley, R. W. and A. J. Ellis, Geothermal systems ancient and modern: a geochemical review, Earth Sci. Rev., 19, 1–50, 1983.

    Article  Google Scholar 

  4. Iio, Y., Y. Kobayashi, and T. Tada., Large earthquakes initiate by the acceleration of slips on the downward extensions of seismogenic faults, Proc. Int. Symp. on Slip and Flow Processes in and below the Seismogenic Region, 407–411, 2001.

  5. Kubo, K. and T. Yamamoto, Cretaceous intrusive rocks of Haramachi district, eastern margin of Abukuma Mountains—Petrography and K-Ar age, J. Geol. Soc. Japan, 96, 731–743, 1990 (in Japanese with English abstract).

    Article  Google Scholar 

  6. Kubo, K., Y. Yanagisawa, T. Yoshioka, T. Yamamoto, and F. Takizawa, Geology of the Haramachi and Omika district with Geological Sheet Map at 1:50,000, Geological Survey of Japan, 155p., 1990 (in Japanese with English abstract).

  7. Linde, A. T., K. Suyehiro, S. Miura, I. S. Sacks, and A. Takagi, Episodic aseismic earthquake precursors, Nature, 334, 513–515, 1988.

    Article  Google Scholar 

  8. Otsuki, K. and M. Ehiro, Cretaceous left-lateral faulting in Northeast Japan and its bearing on the origin of geologic structure of Japan, J. Geol. Soc. Japan, 98, 1097–1112, 1992 (in Japanese with English abstract).

    Article  Google Scholar 

  9. Rutter, E. H., On the nomenclature of mode of failure transitions in rocks, Tectonophys., 122, 381–387, 1986.

    Article  Google Scholar 

  10. Schmid, S. M., Microfabric studies as indicators of deformation mechanisms and flow laws operative in mountain building, in Mountain Building Processes, edited by K. Hsu, pp. 95–110, Academic Press, 1982.

  11. Sendo, T., On the granitic rocks of Mt. Otakine and its adjacent districts in the Abukuma massif, Japan, Sci. Rep. Tohoku Univ. Third Series, 6, 57–167, 1958.

    Google Scholar 

  12. Shibata, K. and S. Uchiumi, K-Ar ages on hornblendes from granitic rocks in the southern Abukuma Plateau, J. Min., Pet. and Eco. Geol., 78, 405–410, 1983 (in Japanese with English abstract).

    Article  Google Scholar 

  13. Shigematsu, N., Dynamic recrystallization in deformed plagioclase during progressive shear deformation, Tectonophys., 305, 437–452, 1999.

    Article  Google Scholar 

  14. Shigematsu, N. and H. Tanaka, Dislocation creep of fine-grained recrystallized plagioclase under low temperature conditions, J. Struct. Geol., 22, 65–79, 2000.

    Article  Google Scholar 

  15. Shigematsu, N. and H. Yamagishi, Quartz microstructures and deformation conditions in the eastern Hatagawa shear zone, NE Japan, Island Arc, 11, 45–60, 2002.

    Article  Google Scholar 

  16. Shigematsu, N., K. Fujimoto, T. Ohtani, T. Tomita, and K. Omura, Plastic deformation and fracturing: a case study in the Hatagawa Fault Zone, Proc. Int. Symp. on Slip and Flow Processes in and below the Seismogenic Region, 265–272, 2001.

  17. Sibson, R. H., Earthquake faulting as a structural process, J. Struct. Geol., 11, 1–14, 1989.

    Article  Google Scholar 

  18. Steiger, R. H. and E. Jäger, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 36, 359–362, 1977.

    Article  Google Scholar 

  19. Takagi, H., K. Goto, and N. Shigematsu, Ultramylonite bands derived from cataclasite and pseudotachylyte in granites, northeast Japan, J. Struct. Geol., 22, 1325–1339, 2000.

    Article  Google Scholar 

  20. Thatcher, W., Episodic strain accumulation in Southern California, Science, 194, 691–695, 1976.

    Article  Google Scholar 

  21. Watanabe, I., Y. Sotozaki, and M. Gorai, Geology of the north eastern border district of northern Abukuma plateau, Sci. Rep. Tokyo Ed. Univ., 2, 69–78, 1953 (in Japanese with English abstract).

    Google Scholar 

  22. White, S., The effects of strain on the microstructures, fabrics, and deformation mechanisms in quarzites, Phil. Trans. Royal Soc. London, A283, 69–86, 1976.

    Article  Google Scholar 

  23. Yanagisawa, Y., T. Yamamoto, Y. Banno, T. Yoshioka, K. Kubo, and F. Takizawa, Geology of the Somanakamura district with Geological Sheet Map at 1:50,000, Geological Survey of Japan, 144 pp., 1996 (in Japanese with English abstract).

Download references

Author information



Corresponding author

Correspondence to Tomoaki Tomita.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomita, T., Ohtani, T., Shigematsu, N. et al. Development of the Hatagawa Fault Zone clarified by geological and geochronological studies. Earth Planet Sp 54, 1095–1102 (2002).

Download citation


  • Granitic Rock
  • Fault Gouge
  • Fault Rock
  • Crush Zone
  • Mylonitic Foliation