Skip to main content

Tribochemical wearing in S-C mylonites and its implication to lithosphere stress level

Abstract

A new approach for revealing the brittle origin of C-surfaces as localized high shear strain zones in S-C mylonites (mylonites with C-surfaces cutting through a mylonitic S-foliation) is presented. A compiled worldwide catalog of width (W) and displacement (D) data for shear zones indicates that ductile mylonites show a constant W/D ratio of 10−0.3 and ratios of brittle ‘cataclasites’ vary in magnitude from 10−1 to 10−3, implying that the ratio is a diagnosis for discriminating ductile and brittle shear zones. A newly measured W-D data of shear displaced minerals along C-surfaces in granitic S-C mylonites from the Hatagawa shear zone in northeast Japan is added on the worldwide W-D catalog, being plotted on a brittle origin with the high W/D ratio of 10−1.5. Using this result and a tribochemical wear theory which accounts for wear formation under hydrothermal conditions, C-surfaces in the S-C mylonite might have been formed by cataclastic deformation under the lithosphere stress level of ca. 300 MPa at temperature of 400°C with water for granite. This result suggests a high lithosphere stress level at the depth of the S-C mylonite formation where deformation is predominantly plastic.

References

  1. Archard, J. F., Contact and rubbing of flat surface, J. Appl. Phys., 24, 981–988, 1953.

    Article  Google Scholar 

  2. Atkinson, B. K., Subcritical crack growth in geologic materials, J. Geophys. Res., 89, 4077–4114, 1984.

    Article  Google Scholar 

  3. Berthé, D., P. Choukroune, and P. Jegouzo, Orthogneiss, mylonite and non-coaxial deformation of granite: the example of the South Armorican Shear Zone, J. Struct. Geol, 1, 31–42, 1979.

    Article  Google Scholar 

  4. Charles, R. J., Static fatigue of glass II, J. Appl. Phys., 29, 1554–1560, 1958.

    Article  Google Scholar 

  5. Chester, F. M., Effects of temperature on friction: Constitutive equations and experiments with quartz gouge, J. Geophys. Res., 99, 7247–7261, 1994.

    Article  Google Scholar 

  6. Davidge, R. W., Mechanical Behaviour of Ceramics, 165 pp., Cambridge Univ. Press., Cambridge, 1979.

    Google Scholar 

  7. Davis, G. H. and S. J. Reynolds, Structural Geology of Rocks and Regions (2nd ed.), 776 pp., John Wiley & Sons, New York, 1996.

    Google Scholar 

  8. Engelder, J. T., Cataclasis and the generation of fault gouge, Bull. Geol. Soc. Am., 85, 1515–1522, 1974.

    Article  Google Scholar 

  9. Ernst, W. G., Metamorphism, partial preservation, and exhumation of ultrahigh-pressure belts, The Island Arc, 8, 125–153, 1999.

    Article  Google Scholar 

  10. Evans, J. P., Thickness-displacement relationships for fault zones, J. Struct. Geol, 12, 1061–1065, 1990.

    Article  Google Scholar 

  11. Fischer, T. E. and W. M. Mullins, Relation between surface chemistry and tribology of ceramics, in Friction and Wear of Ceramics, edited by S. Jahanmir, pp. 51–60, Marcel Dekker Inc., New York, 1994.

    Google Scholar 

  12. Goetze, C. and B. Evans, Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. R. Astron. Soc, 59, 463–478, 1979.

    Article  Google Scholar 

  13. Griggs, D. T. and J. D. Blacic, Quartz-Anomalous weakness of synthetic crystals, Science, 147, 292–295, 1965.

    Article  Google Scholar 

  14. Gupta, H. K., S. V. S. Sarma, T. Harinarayana, and G. Virupakshi, Fluids below the hypocentral region of Latur earthquake, India: Geophysical indicators, Geophys. Res. Lett., 23, 1569–1572, 1996.

    Article  Google Scholar 

  15. Hasegawa, A. and A. Yamamoto, Deep, low-frequency microearthquakes in or around seismic low-velocity zones beneath active volcanoes in northeastern Japan, Tectonophys., 233, 233–255, 1994.

    Article  Google Scholar 

  16. Hull, J., Thickness-displacement relationships for deformation zones, J. Struct. Geol, 10, 431–435, 1988.

    Article  Google Scholar 

  17. Kanamori, H. and D. L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seismol Soc. Am., 65, 1073–1095, 1975.

    Google Scholar 

  18. Kasaya, T., N. Oshiman, N. Sumitomo, M. Uyeshima, Y. Iio, and D. Uehara, Resistivity structure around the hypocentral area of the 1984 Western Nagano Prefecture earthquake in central Japan, Earth Planets Space, 54, 107–118, 2002.

    Article  Google Scholar 

  19. Kitaoka, S., T. Tsuji, Y. Yamaguchi, and K. Kashiwagi, Tribochemical wear theory of non-oxide ceramics in high-temperature and high-pressure water, Wear, 205, 40–46, 1997.

    Article  Google Scholar 

  20. Koch, P. S., J. M. Christie, A. Ord, and R. P. George, Effect of water on the rheology of experimentally deformed quartzite, J. Geophys. Res., 94, 13975–13996, 1989.

    Article  Google Scholar 

  21. Kubo, K. and T. Yamamoto, Cretaceous intrusive rocks of the Haramachi district, eastern margin of the Abukuma mountains—petrography and K-Ar age, J. Geol. Soc. Japan, 96, 731–743, 1990 (in Japanese with English abstract).

    Article  Google Scholar 

  22. Kubo, K., Y Yanagisawa, T. Yoshioka, T. Yamamoto, and F. Takizawa, Geology of the Haramachi and Omika District, With geological Sheet Map at 1:50000, Geol. Surv. Japan, 155 pp., 1990 (in Japanese with English abstract).

  23. Lin, S. and P. F. Williams, The origin of ridge-groove slickenside striae and associated steps in an S-C mylonites, J. Struct. Geol, 14, 315–321, 1992.

    Article  Google Scholar 

  24. Lister, G. S. and B. E. Hobbs, The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history, J. Struct. Geol, 2, 355–371, 1980.

    Article  Google Scholar 

  25. Lister, G. S. and A. W. Snoke, S-C mylonites, J. Struct. Geol, 6, 617–638, 1984.

    Article  Google Scholar 

  26. Means, W. D., A newly recognized type of slickenside striation, J. Struct. Geol, 9, 585–590, 1987.

    Article  Google Scholar 

  27. Moody, J. B. and E. M. Hundley-Goff, Microscopic characteristics of orthoquartzite from sliding friction experiments II. Gouge, Tectonophys., 62, 301–319, 1980.

    Article  Google Scholar 

  28. Morohashi, S., S. Kato, Y. Sawahata, and S. Yashima, Formation of ultrafine powders by a reciprocating friction mill, J. Res. Assoc. Powder Tech. Japan, 10, 316–323, 1973a (in Japanese with English abstract).

    Article  Google Scholar 

  29. Morohashi, S., Y. Sawahata, and S. Yashima, Effect of operational conditions on the formation of ultrafine powder by a reciprocating friction mill, J. Soc. Mater. Sci. Japan, 22, 689–692, 1973b (in Japanese with English abstract).

    Article  Google Scholar 

  30. Muto, J. and H. Nagahama, Hatakawa mylonite: the microstructures and anisotropy of magnetic susceptibility, Abstracts 2001 for the Japan Earth and Planetary Science Joint Meeting, Gm-015, 2001 (in Japanese with English abstract).

  31. Nagahama, H., Fracture in the solid earth, Sci. Rep. Tohoku Univ., 2nd ser. (Geol.), 61, 103–126, 1991.

    Google Scholar 

  32. Nagahama, H. and N. Nakamura, Application of the Pi theorem to the wear rate of gouge formation in frictional sliding of rocks, Pure Appl. Geophys., 142, 795–808, 1994.

    Article  Google Scholar 

  33. Otsuki, K., On the relationship between the width of shear zone and the displacement along fault, J. Geol. Soc. Japan, 84, 661–669, 1978.

    Article  Google Scholar 

  34. Passchier, C. W. and R. A. J. Trouw, Microtectonics, 289 pp., Springer-Verlag, Berlin, 1996.

    Google Scholar 

  35. Ramsay, J. G. and R. J. Lisle, Techniques of Modern Structural Geology, Volume 3: Applications of Continuum Mechanics in Structural Geology, 400 pp., Academic Press, New York, 2000.

    Google Scholar 

  36. Robertson, E. G., Relationship of fault displacement to gouge and breccia thickness, Miner. Engr., 35, 1426–1432, 1983.

    Google Scholar 

  37. Rutter, E. H. and D. H. Mainprice, The effect of water on the stress relaxation of faulted and unfaulted sandstone, Pure Appl. Geophys., 116, 634–654, 1978.

    Article  Google Scholar 

  38. Scholz, C. H., Wear and gouge formation in brittle faulting, Geology, 15, 493–495, 1987.

    Article  Google Scholar 

  39. Shigematsu, N. and H. Tanaka, Dynamic recrystallization in deformed plagioclase during progressive shear deformation, Tectonophys., 305, 437–452, 1999.

    Article  Google Scholar 

  40. Shimamoto, T., The origin of S-C mylonites and a new fault-zone model, J. Struct. Geol., 11, 51–64, 1989.

    Article  Google Scholar 

  41. Shimamoto, T., Rheology of rocks and plate tectonics, in Comprehensive Rock Engineering: Principles, Practice & Projects (volume 1), edited by J. A. Hudson, pp. 93–109, Pergamon Press, Oxford, 1993.

    Google Scholar 

  42. Sibson, R. H., Fault rocks and fault mechanisms, J. Geol. Soc. London, 133, 191–213, 1977.

    Article  Google Scholar 

  43. Simpson, C., Borrego Springs-Santa Rosa mylonite zone: A late Cretaceous west-directed thrust in southern California, Geology, 12, 8–11, 1984.

    Article  Google Scholar 

  44. Takagi, H., K. Goto, and N. Shigematsu, Ultramylonite bands derived from cataclasite and pseudotachylyte in granites, northeast Japan, J. Struct. Geol., 22, 1325–1339, 2000.

    Article  Google Scholar 

  45. Takeuchi, A. and H. Nagahama, Voltage changes induced by stick-slip of granites, Geophys. Res. Lett., 28, 3365–3368, 2001.

    Article  Google Scholar 

  46. Takeuchi, A. and H. Nagahama, Interpretation of charging on fracture or frictional slip surface of rocks, Phys. Earth Planet. Inter., 130, 285–291, 2002.

    Article  Google Scholar 

  47. Tanaka, K., H. Koguchi, and T. Mura, A dislocation model for hardness indentation problems-II, Int. J. Engng. Sci., 27, 11–27, 1989.

    Article  Google Scholar 

  48. Thurber, C., S. Roecker, W. Ellsworth, Y. Chen, W. Lutter, and R. Sessions, Two-dimensional seismic image of the San Andreas fault in the northern Gabilian range, central California: evidence for fluids in the fault zone, Geophys. Res. Lett., 24, 1591–1594, 1997.

    Article  Google Scholar 

  49. Wiederhorn, S. M., Influence of water vapor on crack propagation in soda-lime glass, J. Amer. Ceram. Soc., 50, 407–414, 1967.

    Article  Google Scholar 

  50. Will, T. M. and C. J. L. Wilson, Experimentally produced slickenside lineations in pyrophyllitic clay, J. Struct. Geol., 11, 657–667, 1989.

    Article  Google Scholar 

  51. Yokobori, T., Strength, Fracture and Fatigue of Materials, pp. 372, Walters-Noordhoff. Co., Netherlands, 1965.

    Google Scholar 

  52. Yoshioka, N., Fracture energy and the variation of gouge and surface roughness during frictional sliding of rocks, J. Phys. Earth, 34, 335–355, 1986.

    Article  Google Scholar 

  53. Yund, R. A., M. L. Blanpied, T. E. Tullis, and J. D. Weeks, Amorphous material in high strain experimental fault gouges, J. Geophys. Res., 95, 15589–15602, 1990.

    Article  Google Scholar 

  54. Zhao, D., H. Kanamori, and H. Negishi, Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?, Science, 274, 1891–1894, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Norihiro Nakamura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakamura, N., Nagahama, H. Tribochemical wearing in S-C mylonites and its implication to lithosphere stress level. Earth Planet Sp 54, 1103–1108 (2002). https://doi.org/10.1186/BF03353309

Download citation

Keywords

  • Shear Zone
  • Contact Asperity
  • Subcritical Crack Growth
  • Frictional Slip
  • Contact Junction