Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Resistivity structure across Itoigawa-Shizuoka tectonic line and its implications for concentrated deformation

Abstract

We investigated the deep crustal resistivity structure across Itoigawa-Shizuoka Tectonic Line (ISTL), one of the most dangerous active intraplate faults in Japan, by use of wide-band magnetotelluric (MT) method. The 28 MT stations were aligned perpendicular to the ISTL. A two-dimensional model was created in transverse magnetic (TM) mode where electric currents flow in N60°W-N120°E directions. The model showed good correlations with the surface geology. In particular, we found a thick (6 km) surface conductor to the east of ISTL which corresponds to the heavily folded sedimentary layer. The Japan Alps to the west of the ISTL is characterized by the resistive upper crust, where the pre-Tertiary rocks crop out. The Japan Alps is underlain by a conductor below 15–20 km depth, which is consistent with the low seismic velocity anomaly. We also found a localized shallow conductor corresponding to the Mt. Tateyama volcano. The most important feature is the conductor in the mid-crust directly under the area of active folding to the east of the ISTL. This may imply a localized zone of fluids because of the enhanced porosity in a shear zone. The recent seismicity clusters in the resistive crust underlain by the conductor, and this suggests the fluid involvement in earthquake generation processes.

References

  1. Ague, J., J. Park, and D. M. Rye, Regional metamorphic dehydration and seismic hazard, Geophys. Res. Lett., 25, 4221–4224, 1998.

    Article  Google Scholar 

  2. Fujimoto, K., T. Ohtani, N. Shigematsu, Y. Miyashita, T. Tomita, H. Tanaka, K. Omura, and Y. Kobayashi, Water-rock interaction observed in the brittle-plastic transition zone, Earth Planets Space, 54, this issue, 1127–1132, 2002.

    Article  Google Scholar 

  3. Gamble, T. D., W. M. Goubou, and J. Clarke, magnetotellurics with a remote reference, Geophysics, 81, 69–89, 1979.

    Google Scholar 

  4. Groom, R. W. and R. C. Bailey, Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortions, J. Geophys. Res., 94, 1913–1925, 1989.

    Article  Google Scholar 

  5. Haak, V. and R. Hutton, Electrical resistivity in continental lower crust, in The Nature of the Lower Continental Crust, edited by J. B. Dawson, D. A. Carswell, J. Hall, and K. H. Wedepohl, Geological Society Special Publication, no. 24, 35–49, 1986.

  6. Harayama, S., Youngest exposed granitoid pluton on Earth: Cooling and rapid uplift of the Pliocene-Quaternary Takidani Granodiorite in the Japan Alps, central Japan, Geology, 20(7), 657–660, 1992.

    Article  Google Scholar 

  7. Honkura, Y., A. M. Isikara, N. Oshiman, A. Ito, B. Üçer, S. Baris, M. K. Tunçer, M. Matsushima, R. Pektas, C. Çelik, S. B. Tank, F. Takahashi, M. Nakanishi, R. Yoshimura, Y. Ikeda, and T. Komut, Preliminary results of multidisciplinary observations before, during and after the Kocaeli (Izmit) earthquake in the western part of the North Anatolian Fault Zone, Earth Planets Space, 52, 293–298, 2000.

    Article  Google Scholar 

  8. Iio, Y. and Y. Kobayashi, A physical understanding of large intraplate earthquakes, Earth Planets Space, 54, this issue, 1001–1004, 2002.

    Article  Google Scholar 

  9. Ikeda, Y., The fact of topographical observation about the form of the Hida mountains, Earth Monthly, 18, 62–76, 1996 (in Japanese).

    Google Scholar 

  10. Jones, A. G., Electrical conductivity of the lower continental crust, in Continental Lower Crust, edited by D. M. Fountain, R. J. Arculus, and R. W. Kay, Elsevier, New York, 1992.

    Google Scholar 

  11. Kobayashi, Y., Initiation of plate subduction, Earth Monthly, 3, 510–518, 1983 (in Japanese).

    Google Scholar 

  12. Lemonnier, C., G. Marquis, F. Perrier, J.-P. Avouac, G. Chitrakar, B. Kafle, S. Sapkota, U. Gautam, G. Tiwari, and M. Bano, Electrical structure of the Himalaya of Central Nepal: High conductivity around the mid-crustal ramp along the MHT, Geophys. Res. Lett., 26, 3261–3264, 1999.

    Article  Google Scholar 

  13. Matsubara, M., N. Hirata, S. Sakai, and I. Kawasaki, A low velocity zone beneath the Hida Mountains derived from dense array observation and tomographic method, Earth Planets Space, 52, 143–154, 2000.

    Article  Google Scholar 

  14. Mitsuhata, Y., Y. Ogawa, M. Mishina, T. Kono, T. Yokokura, and T. Uchida, Electromagnetic heterogeneity of the seismogenic region of 1962 M6.5 Northern Miyagi Earthquake, northeastern Japan, Geophys. Res. Lett., 28, 4371–4374, 2001.

    Article  Google Scholar 

  15. Nakamura, K., Possible nascent trench along the eastern Japan Sea as the convergent boundary between Eurasian and North American plates, Bull. Earthq. Res. Inst. Univ. Tokyo, 58, 711–722, 1983 (in Japanese).

    Google Scholar 

  16. Nesbitt, B. E., Electrical resistivity of crustal fluids, J. Geophys. Res., 98, 4301–4310, 1993.

    Article  Google Scholar 

  17. Ogawa, Y., On two-dimensional modeling of magnetotelluric field data, Surveys in Geophysics, 23(2–3), 251–273, 2002.

    Article  Google Scholar 

  18. Ogawa, Y. and T. Uchida, A two-dimensional magnetotelluric inversion assuming Gaussian static shift, Geophys. J. Int., 126, 69–76, 1996.

    Article  Google Scholar 

  19. Ogawa, Y., M. Mishina, T. Goto, H. Satoh, N. Oshiman, T. Kasaya, Y. Takahashi, T. Nisitani, S. Sakanaka, M. Uyeshima, Y. Takahashi, Y. Honkura, and M. Matsushima, Magnetotelluric imaging of fluids in intraplate earthquakes zones, NE Japan back arc, Geophys. Res. Lett., 28, 3741–3744, 2001.

    Article  Google Scholar 

  20. Okumura, K., K. Shimokawa, H. Yamazaki, and E. Tsukuda, Recent surface faulting along the middle section of Itoigawa-Shizuoka tectonic line— trenching survey of the Gofukuji fault near Matsumoto, central Japan, Zishin, 46, 425–438, 1994 (in Japanese).

    Google Scholar 

  21. Sagiya, T., T. Nishimura, Y. Iio, and T. Tada, Crustal deformation around the northern and central Itoigawa-Shizuoka Tectonic Line, Earth Planets Space, 54, this issue, 1059–1063, 2002.

    Article  Google Scholar 

  22. Sato, H. and Y. Ikeda, Crustal structure of NE Japan and extension tectonics, Earth Monthly, special volume, 27, 135–141, 1999 (in Japanese).

    Google Scholar 

  23. Sato, H., T. Imaizumi, T. Yoshida, H. Ito, and A. Hasegawa, Tectonic evolution and deep to shallow geometry of Nagamachi-Rifu Active Fault System, NE Japan, Earth Planets Space, 54, this issue, 1039–1043, 2002.

    Article  Google Scholar 

  24. Umino, N., K. Nida, A. Hasegawa, and H. Sato, Microearthquake activity in the focal areas of large earthquakes that occurred in the last ~100 years in northeastern Japan, 2000 Japan Earth and Planetary Science Joint Meeting, Se-018, 2000.

  25. Unsworth, M., G. Egbert, and J. Booker, High-resolution electromagnetic imaging of the San Andreas fault in Central California, J. Geophys. Res., 104, 1131–1150, 1999.

    Article  Google Scholar 

  26. Wannamaker, P. E., S. H. Ward, and G. W. Hohmann, Magnetotelluric responses of three-dimensional bodies in layered earth, Geophysics, 49, 1517–1533, 1984.

    Article  Google Scholar 

  27. Wannamaker, P. E., G. R. Jiracek, J. A. Stodt, T. G. Caldwell, V. M. Gonzalez, J. D. McKnight, and A. D. Porter, Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data, J. Geophys. Res., 10.1029/2001JB000186, 2002.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasuo Ogawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogawa, Y., Takakura, S. & Honkura, Y. Resistivity structure across Itoigawa-Shizuoka tectonic line and its implications for concentrated deformation. Earth Planet Sp 54, 1115–1120 (2002). https://doi.org/10.1186/BF03353311

Download citation

Keywords

  • Apparent Resistivity
  • Earth Planet Space
  • Induction Vector
  • Resistivity Structure
  • North American Plate