Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Acceleration of slip motion in deep extensions of seismogenic faults in and below the seismogenic region

Abstract

This paper addresses concepts presented in Session 7 of the conference on “Slip and Flow Processes Near the Base of the Seismogenic Zone” held at Sendai, Japan in November, 2001. The questions raised in this session were associated with the downward extensions of seismic faults into the lower crust. The important issue is whether asiesmic slip accelerates on downward extensions prior to large earthquakes on the upper, seismic part. If this is the case, then such movement may be measurable as a precursor to large seismic events as accelerated tilt and/or distortion at the surface. Associated issues involve the geometry of downward extensions of faults, the mechanisms of localisation in the lower crust, and the mechanisms for earthquake generation near the base of the upper crust. The outcomes from this session are that aseismic slip in the lower crust could be generated by several mechanisms of localisation including yield of an elastic-viscous-plastic material, softening (including, in particular, thermal softening) of an elastic-viscous material and ductile fracture. Fine scale modelling of localisation in the lower crust is still required to resolve the issue whether accelerated motion precedes seismic slip in the upper crust. Such modelling also demands a better understanding of crustal rheology than we have at present.

References

  1. Anand, L., K. H. Kim, and T. G. Shawki, Onset of shear localization in viscoplastic solids, J. Mech. Phys. Solids, 35(4), 407–429, 1987.

    Article  Google Scholar 

  2. Ashby, M. F. and D. R. H. Jones, Engineering Materials 2, Pergamon Press, Oxford, 1986.

    Google Scholar 

  3. Backofen, W. A., Deformation Processing, 326 pp., Addison-Wesley, 1972.

  4. Bird, P., Initiation of intracontinental subduction in the Himalaya, J. Geophys. Res., 83, 4975–4987, 1978.

    Article  Google Scholar 

  5. Branlund, J., K. Regenauer-Lieb, and D. A. Yuen, Fast ductile failure of passive margins for sediment loading, Geophys. Res. Lett., 25(13), 1989–1992, 2000.

    Article  Google Scholar 

  6. Brewer, J. A. and D. K. Smythe, MOIST and the continuity of crustal reflector geometry along the Caledonian-Appalachian orogen, J. Geol. Soc. London, 141, 105–120, 1984.

    Article  Google Scholar 

  7. Byerlee, J. D., Theory of friction based on brittle fracture, J. Appl. Phys., 38, 2928–2934, 1967.

    Article  Google Scholar 

  8. Carter, N. L. and M. C. Tsenn, Flow properties of continental lithosphere, Tectonophys., 136, 27–63, 1987.

    Article  Google Scholar 

  9. Cherukuri, H. P. and T. G. Shawki, An energy-based localization theory: 1. Basic Framework, Int. Journ. Plasticity, 11(1), 15–40, 1995a.

    Article  Google Scholar 

  10. Cherukuri, H. P. and T. G. Shawki, An energy-based localization theory: II. Effects of diffusion, inertia and dissipation numbers, Int. Journ. Plasticity, 11(1), 41–64, 1995b.

    Article  Google Scholar 

  11. Chopra, P. N. and M. S. Paterson, The experimental deformation of dunite, Tectonophys., 78, 453–473, 1981.

    Article  Google Scholar 

  12. Cox, S. F., Deformational controls on the dynamics of fluid flow in mesothermal gold systems, in Fractures, Fluid Flow and Mineralization, edited by K. McCaffrey, L. Lonergan, and J. Wilkinson, Geological Society, London, Special Publications, 155, 123–140, 1999.

  13. Cox, S. F., Fluid flow in mid-to deep crustal shear systems: Experimental constraints, observations on exhumed high fluid flux shear systems, and implications for seismogenic processes, Earth Planets Space, 54, this issue, 1121–1125, 2002.

    Article  Google Scholar 

  14. Cundall, P. A. and M. Board, A microcomputer program for modelling large-strain plasticity problems, Proc. 6th International conf. On Numerical Methods in Geomechanics, Balkema, Rotterdam, 2101–2108, 1988.

  15. Dieterich, J. H., Modelling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168, 1979.

    Article  Google Scholar 

  16. Dieterich, J. H., Constitutive properties of faults with simulated gouge, in Mechanical Behaviour of Crustal Rocks: The Handin Volume, Geophys. Monogr. 24, edited by N. L. Carter et al., pp. 103–120, AGU, Washington D.C., 1981.

    Google Scholar 

  17. Estrin, Y. and Y. Brechet, On a model of frictional sliding, PAGEOPH, 147, 4, 1996.

    Article  Google Scholar 

  18. Goetze, C. and B. Evans, Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. R. Astron. Soc., 59, 463–478, 1979.

    Article  Google Scholar 

  19. Goleby, B. R., R. D. Shaw, C. Wright, B. L. N. Kennett, and K. Lambeck, Geophysical evidence of ‘thick-skinned’ crustal deformation in central Australia, Nature, 337, 325–330, 1989.

    Article  Google Scholar 

  20. Gu, J.-C., J. R. Rice, A. I. Ruina, and S. T. Tse, Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction, J. Mech. Phys. Solids, 32, 167–196, 1984.

    Article  Google Scholar 

  21. Hobbs, B. E. and A. Ord, Plastic instabilities—implications for the origin of intermediate and deep focus earthquakes, J. Geophys. Res., 93, 10521–10540, 1988.

    Article  Google Scholar 

  22. Hobbs, B. E., A. Ord, and C. Teyssier, Earthquakes in the ductile regime?, PAGEOPH, 124, 1/2, 1986.

    Article  Google Scholar 

  23. Hobbs, B. E., H.-B. Muhlhaus, and A. Ord, Instability, softening and localization of deformation, in Deformation Mechanisms, Rheology and Tectonics, edited by R. J. Knipe and E. H. Rutter, Geol. Soc. Spec. Pub., 54, 143–165, 1990.

  24. Hobbs, B. E., H.-B. Muhlhaus, A. Ord, and L. N. Moresi, The influence of chemical migration upon fold evolution in multi-layered materials, in Selbstorganisation. Band II. Non-equilibrium processes and dissipative structures in geoscience, edited by H.-J. Krug and J. H. Kruhl, Duncker & Humblot, Berlin, pp. 229–252, 2000.

    Google Scholar 

  25. Iio, Y. and Y. Kobayashi, A physical understanding of large intraplate earthquakes, Earth Planets Space, 54, this issue, 1001–1004, 2002. Jaeger, J. C., Elasticity, Fracture and Flow, Methuen & Co., London, 268 pp., 1969.

    Article  Google Scholar 

  26. Kameyama, M., On the relevance of thermal viscous coupling as a model of frictional constitute relationship, Tectonophys., February, 2002 (submitted).

  27. Kameyama, M. and Y. Kaneda, Thermal-mechanical coupling in shear deformation of viscoelastic material as a model of frictional constitutive relations, Pure Appl. Geophys., 2001 (in press).

  28. Linde, A. T., K. Suyehiro, S. Miura, I. S. Sacks, and A. Takagi, Episodic aseismic earthquake precursors, Nature, 334, 513–515, 1988.

    Article  Google Scholar 

  29. Miller, S. and A. Nur, Permeability as a toggle switch in fluid-controlled crustal processes, Earth Plan. Sci. Lett, 183, 133–146, 2000.

    Article  Google Scholar 

  30. Moresi, L. and V. Solomatov, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus, Geophys. J. Int., 133, 669–682, 1998.

    Article  Google Scholar 

  31. Moresi, L., F. Dufour, and H. Muhlhaus, Mantle convection models with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling, PAGEOPH, 2001 (in press).

  32. Ogawa, M., Shear instability in a viscoelastic material as the cause of deep focus earthquakes, J. Geophys. Res., 92, 13801–13810, 1987.

    Article  Google Scholar 

  33. Ord, A. and B. E. Hobbs, The strength of the continental crust, detachment zones and the development zones and the development of plastic instabilities, Tectonophys., 158, 269–289, 1989.

    Article  Google Scholar 

  34. Paterson, M. S., Experimental Rock Deformation—The Brittle Field, edited by W. von Engelhardt, Tubingen — T. Hahn, Aachen, Springer-Verlag, 1978.

  35. Poirier, J. P., Shear localization and shear instability in materials in the ductile field, J. Struct. Geol., 2, 135–142, 1980.

    Article  Google Scholar 

  36. Poirier, J., J. L. Bouchez, and J. J. Jonas, A dynamic model for aseismic ductile shear zones, Earth Planet. Sci. Lett, 43, 441–453, 1979.

    Article  Google Scholar 

  37. Ramsay, J. G., Folding and fracturing of rocks, 568 pp., Ed. Frank Press, MacGraw-Hill, 1974.

  38. Regenauer-Lieb, K., Dilatant plasticity applied to Alpine Collision: ductile void growth in the intraplate area beneath the Eifel Volcanic Field, J. Geodynam., 27, 1–21, 1999.

    Article  Google Scholar 

  39. Regenauer-Lieb, K. and D. A. Yuen, Fast mechanisms for the formation of new plate boundaries, Tectonophys., 322, 53–67, 2000a.

    Article  Google Scholar 

  40. Regenauer-Lieb, K. and D. Yuen, Quasi-adiabatic instabilities associated with necking processes of an elasto-viscoplastic lithosphere, Physics of the Earth and Planetary Interiors, 118, 89–102, 2000b.

    Article  Google Scholar 

  41. Regenauer-Lieb, K., D. A. Yuen, and J. Branlund, The initiation of Subduction: Criticality by addition of water, Science, 294, 578–580, 2001.

    Article  Google Scholar 

  42. Reinen, L. A., Slip styles in a spring-slider model with a laboratory-derived constitute law for serpentinite, Geophys. Res. Lett, 27(14), 2037–2040, 2000.

    Article  Google Scholar 

  43. Reinen, L. A., J. D. Weeks, and T. E. Tullis, The frictional behaviour of lizardite and antigorite serpentinites; experiments, constitutive models, and implications for natural faults, Pure Appl. Geophys., 143, 317–358, 1994.

    Article  Google Scholar 

  44. Reston, T. J., Mantle shear zones and the evolution of the northern North Sea basin, Geology, 18, 272–275, 1990.

    Article  Google Scholar 

  45. Rice, J. A., N. Lapusta, and K. Ranjith, Rate and state dependent friction and the stability of sliding between elastically deformable solids, J. Mech. Phys. Solids, 49, 1865–1898, 2001.

    Article  Google Scholar 

  46. Rudniki, J. W. and J. R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371–394, 1975.

    Article  Google Scholar 

  47. Ruina, A. L., Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359–10370, 1983.

    Article  Google Scholar 

  48. Rutter, E. H., On the relationship between the formation of shear zones and the form of the flow law for rocks undergoing dynamic recrystallization, Tectonophys., 303, 147–158, 1999.

    Article  Google Scholar 

  49. Sacks, I. S., A. T. Linde, J. A. Snoke, and S. Suyehiro, A slow earthquake sequence following the Izu-Oshima Earthquake of 1978, in Earthquake Prediction: An International Review, edited by D. W. Simpson and P. G. Richards, Maurice Ewing Series, 4, AGU, 617–628, 1981.

  50. Shawki, T. G. and R. J. Clifton, Shear band formation in thermal viscoplastic materials, Mech. of Materials, 8, 13–43, 1989.

    Article  Google Scholar 

  51. Shelton, G. and J. Tullis, Experimental flow laws for crustal rocks, EOS Trans. Am. Geophys. Union, 62, 396, 1981.

    Google Scholar 

  52. Shibazaki, B., H. Tanaka, H. Horikawa, and Y. Iio, Modeling slip processes at the deeper part of the seismogenic zone using a constitutive law combining friction and flow laws, Earth Planets Space, 54, this issue, 1211–1218, 2002.

    Article  Google Scholar 

  53. Shigematsu, N., K. Fujimoto, and T. Ohtani, Plastic deformation and fracturing: a case study in the Hatagawa Fault Zone, Proceedings of the International Symposium on Slip and Flow Processes in and below the Seismogenic Region, Sendai, Japan, 2001.

  54. Sibson, R. H., F. Robert, and K. H. Poulson, High-angle reverse faults, fluid-pressure cycling, and mesothermal gold deposits, Geology, 16, 551–555, 1988.

    Article  Google Scholar 

  55. Tanaka, H., B. Shibazaki, N. Shigematsu, K. Fujimoto, T. Ohtani, Y. Miyashita, T. Tomita, K. Omura, Y. Kobayashi, and J. Kameda, Growth of plastic shear zone and its duration inferred from theoretical consideration and observation of an ancient shear zone in the granitic crust, Earth Planets Space, 54, this issue, 1207–1210, 2002.

    Article  Google Scholar 

  56. Umino, N., H. Ujikawa, S. Hori, and A. Hasegawa, Distinct S-wave reflectors (bright spots) detected beneath the Nagamachi-Rifu fault, NE Japan, Earth Planets Space, 54, this issue, 1021–1026, 2002.

    Article  Google Scholar 

  57. Vermeer, P. A. and R. de Borst, Non-associated plasticity for soils, concrete and rock, Heron, 29, 1–62, 1984.

    Google Scholar 

  58. White, S. H. and P. G. Bretan, Rheological controls on the geometry of deep faults and the tectonic delamination of the continental crust, Tectonics, 4, 303–309, 1985.

    Article  Google Scholar 

  59. Zhu, L., Crustal structure across the San Andreas Fault, Southern California from teleseismic converted waves, Earth Planet. Sci. Lett., 179, 183–190, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Hobbs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hobbs, B.E., Tanaka, H. & Iio, Y. Acceleration of slip motion in deep extensions of seismogenic faults in and below the seismogenic region. Earth Planet Sp 54, 1195–1205 (2002). https://doi.org/10.1186/BF03353320

Download citation

Keywords

  • Shear Zone
  • Lower Crust
  • Ductile Fracture
  • Constitutive Behaviour
  • Thermal Softening