Skip to main content

Strain localisation within ductile shear zones beneath active faults: The Alpine Fault contrasted with the adjacent Otago fault system, New Zealand

Abstract

The Alpine Fault accommodates around 60–70% of the 37 mm/yr oblique motion between the Australian and Pacific plates in the South Island of New Zealand. Uplift on the fault over the past 5 Ma has led to the exhumation of the deep-seated mylonite zone alongside the present surface trace. Shear strain estimates in the mylonites reach 200–300 in the most highly strained rocks, and provide an integrated displacement across the zone of 60–120 km. This is consistent with the amount of displacement during the last 5 Ma, suggesting that displacement on the fault is localised within a 1–2 km wide ductile shear zone to depths of 25–30 km. Existing geodetic data, together with Late Quaternary slip rate and paleoseismic data, are consistent with the steady build-up and release of elastic strain in the upper crust driven by ductile creep within a narrow mylonite zone at depth. Faults of the Otago Fault System form a parallel array east of the Alpine Fault and accommodate c. 2 mm/yr contraction. Long periods of quiescence on individual structures suggest episodic, or “intermittently characteristic”, behaviour. This is more consistent with failure on faults within an elastico-frictional upper crust above a ductile lower crust. Localisation of crustal deformation may be initiated by inherited weaknesses in the upper crust, with downward propagation of slip causing strain weakening within the ductile zone immediately beneath. Inherited structures of great length focus a greater amount of displacement and hence more rapidly develop underlying zones of ductile shear.

References

  1. Adams, C. J., Uplift rates and thermal structure in the Alpine Fault Zone and Alpine Schists, Southern Alps, New Zealand, in Thrust and Nappe Tectonics, edited by K. McClay and N. J. Price, pp. 211–222, Geological Society of London Special Publication, 9, 1981.

    Google Scholar 

  2. Beanland, S. and K. R. Berryman, Style and episodicity of late Quaternary activity on the Pisa-Grandview fault zone, central Otago, New Zealand, New Zealand Journal of Geology and Geophysics, 32, 451–461, 1989.

    Article  Google Scholar 

  3. Beanland, S., K. R. Berryman, A. G. Hull, and P. R. Wood, Late Quaternary deformation at the Dunstan Fault, Central Otago, New Zealand, in Recent Crustal Movements of the Pacific Region, edited by W. I. Reilly and B. E. Harford, pp. 293–306, Royal Society of New Zealand Bulletin, 24, 1986.

    Google Scholar 

  4. Beavan, J., M. Moore, C. Pearson, M. Henderson, B. Parsons, S. Bourne, P. England, D. Walcott, G. Blick, D. Darby, and K. Hodgkinson, Crustal deformation during 1994–1998 due to oblique continental collision in the central Southern Alps, New Zealand, and implications for seismic potential of the Alpine fault, Journal of Geophysical Research, 104, 25,232–25,255, 1999.

    Article  Google Scholar 

  5. Ben-Zion, Y., K. Dahman, V. Lyakhovsky, D. Ertas, and A. Agnon, Self-driven mode switching of earthquake activity on a fault system, Earth and Planetary Science Letters, 172, 11–21, 1999.

    Article  Google Scholar 

  6. Bishop, D. G., Extent and regional deformation of the Otago peneplain, Institute of Geological and Nuclear Sciences Science Report, 94/1, 10 pp., 1994.

    Google Scholar 

  7. Bourne, S. J., T. Arnadottir, J. Beavan, D. J. Darby, P. C. England, B. Parsons, R. I. Walcott, and P. R. Wood, Crustal deformation of the Marlborough fault zone in the South Island of New Zealand: Geodetic constraints over the interval 1982–1994, Journal of Geophysical Research, 103, 30147–30165, 1998.

    Article  Google Scholar 

  8. Bull, W. B., Prehistorical earthquakes on the Alpine Fault, New Zealand, Journal of Geophysical Research, 101, 6037–6050, 1996.

    Article  Google Scholar 

  9. Cooper, A. F, Retrograde alteration of chromium kyanite in metachert and amphibolite whiteschist from the Southern Alps, New Zealand, with implications for uplift on the Alpine Fault, Contributions to Mineralogy & Petrology, 75, 153–164, 1980.

    Article  Google Scholar 

  10. Cooper, A. F and R. J. Norris, Estimates forthe timing of the last coseismic displacement on the Alpine fault, northern Fiordland, New Zealand, New Zealand Journal of Geology and Geophysics, 33, 303–308, 1990.

    Article  Google Scholar 

  11. Davey, F. J., T. Henyey, W. S. Holbrook, D. Okaya, T. A. Stern, A. Melhuish, S. Henrys, H. Anderson, D. Eberhart-Phillips, T. McEvilly, R. Uhrhammer, F. Wu, G. R. Jiracek, P. E. Wannamaker, G. Caldwell, and N. Christensen, Preliminary results from a geophysical study across a modern continent-continent collisional plate boundary—the Southern Alps, New Zealand, Tectonophysics288, 221–235, 1998.

    Article  Google Scholar 

  12. Davey, F. J., T. Henyey, S. Kleffmann, A. Melhuish, D. Okaya, T. A. Stern, and D. J. Woodward, Crustal reflections from the Alpine Fault zone, South Island, New Zealand, New Zealand Journal of Geology and Geophysics, 38, 601–604, 1995.

    Article  Google Scholar 

  13. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophysical Research Letters, 21, 2191–2194, 1994.

    Article  Google Scholar 

  14. Ellis, S. and B. Stöckhert, Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust, Journal of Geophysical Research, 109(B5), Article no. B05407, 2004.

    Google Scholar 

  15. Ellis, S., S. Wissing, and A. Pfiffner, Strain localisation as a key to reconciling experimentally derived flow-law data with dynamic models of continental collision, International Journal of Earth Sciences, 90, 168–180, 2001.

    Article  Google Scholar 

  16. Ellis, S., G. Schreurs, and M. Panien, Comparisons between analogue and numerical models of thrust wedge development, Journal of Structural Geology, 26, 1659–1675, 2004.

    Article  Google Scholar 

  17. Grapes, R. H. and T. Watanabe, Mineral composition variation in Alpine Schist, Southern Alps, New Zealand: Implications for recrystallization and exhumation, The Island Arc, 3, 163–181, 1994.

    Article  Google Scholar 

  18. Hanmer, S., Great Slave Lake Shear Zone, Canadian Shield: A reconstructed vertical profile of a crustal scale fault, Tectonophysics, 149, 245–264, 1988.

    Article  Google Scholar 

  19. Hobbs, B. E., H. Tanaka, and Y. Iio, Acceleration of slip motion in deep extensions of seismogenic faults in and below the seismogenic region, Earth Planets Space, 54, 1195–1205, 2002.

    Article  Google Scholar 

  20. Holm, D. K., R. J. Norris, and D. Craw, Brittle/ductile deformation in a zone of rapid uplift: Central Southern Alps, New Zealand, Tectonics, 8, 153–168, 1989.

    Article  Google Scholar 

  21. Jackson, J. and M. Leeder, Drainage systems and the development of normal faults: An example from Pleasant Valley, Nevada, Journal of Structural Geology, 16, 1041–1060, 1994.

    Article  Google Scholar 

  22. Jackson, J. A., Strength of the continental lithosphere: Time to abandon the jelly sandwich?, GSA Today, 12, 4–10, 2002.

    Article  Google Scholar 

  23. Jackson, J. A., R. J. Norris, and J. H. Youngson, The structural evolution of active fault and fold systems in central Otago, New Zealand: Evidence revealed by drainage patterns, Journal of Structural Geology, 18, 217–235, 1996.

    Article  Google Scholar 

  24. Koons, P. O., R. J. Norris, D. Craw, and A. F. Cooper, Influence of exhumation on the structural evolution of transpressional plate boundaries: An example from the Southern Alps, New Zealand, Geology, 31, 3–6, 2003.

    Article  Google Scholar 

  25. Leitner, B. D., D. Eberhart-Philips, H. Anderson, and J. N. Nabelek, A focused look at the Alpine Fault, New Zealand: Seismicity, focal mechanisms and stress inversions, Journal of Geophysical Research, 106, 2193–2220, 2001.

    Article  Google Scholar 

  26. LeMasurier, W. E. and C. A. Landis, Mantle-plume activity recorded by low-relief erosion surfaces in West Antarctica and New Zealand, Geological Society of America Bulletin, 108, 1450–1466, 1996.

    Article  Google Scholar 

  27. Litchfield, N. J., The Titri Fault system: Quaternary-active faults near the leading edge of the Otago reverse fault province, New Zealand Journal of Geology and Geophysics, 44, 517–534, 2001.

    Article  Google Scholar 

  28. Litchfield, N. J. and R. J. Norris, Holocene motion on the Akatore Fault, south Otago coast, New Zealand, New Zealand Journal of Geology and Geophysics, 43, 405–418, 2000.

    Article  Google Scholar 

  29. Little, T. A., R. J. Holcombe, and B. R. Ilg, Kinematics of oblique collision and ramping inferred from microstructures and strain in middle crustal rocks, central Southern Alps, New Zealand, Journal of Structural Geology, 24, 219–239, 2002.

    Article  Google Scholar 

  30. Maggi, A., J. Jackson, D. McKenzie, and K. Priestley, Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology, 28, 495–498, 2000.

    Article  Google Scholar 

  31. Markley, M. and R. J. Norris, Structure and Neotectonics of the Blackstone Hill Antiform, central Otago, New Zealand, New Zealand Journal of Geology & Geophysics, 42, 205–218, 1999.

    Article  Google Scholar 

  32. Molnar, P., H. J. Anderson, E. Audoine, D. Eberhart-Phillips, K. R. Gledhill, E. K. Klosko, T. V. McEvilly, D. Okaya, M. K. Savage, T. Stern, and F. T. Wu, Continuous deformation versus faulting through continental lithosphere: Tests using New Zealand as a laboratory for the study of continental dynamics, Science, 286, 516–519, 1999.

    Article  Google Scholar 

  33. Norris, R. J. and A. F. Cooper, Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand, Journal of Structural Geology, 23, 507–520, 2001.

    Article  Google Scholar 

  34. Norris, R. J. and A. F. Cooper, Very high strains recorded in mylonites along the Alpine Fault, New Zealand: Implications for the deep structure of plate boundary faults, Journal of Structural Geology, 25, 2141–2157, 2003.

    Article  Google Scholar 

  35. Norris, R. J. and R. Nicolls, Strain accumulation and episodicity of fault movements in Otago, 145 pp, EQC Research Report, 01/445, EQC Research Foundation, Wellington, 2004.

    Google Scholar 

  36. Norris, R. J., A. F. Cooper, T. Wright, and K. R. Berryman, Dating of past Alpine Fault rupture in South Westland, 75 pp, EQC Research Report, 99/341, EQC Research Foundation, Wellington, 2001.

    Google Scholar 

  37. Norris, R. J., P. O. Koons, and A. F. Cooper, The obliquely-convergent plate boundary in the South Island of New Zealand: Implications for ancient collision zones, Journal of Structural Geology, 12, 715–725, 1990.

    Article  Google Scholar 

  38. Officers of the Geological Survey, Late Quaternary Tectonic Map of New Zealand 1:2 000 000, New Zealand Geological Survey Miscellaneous Series, Map 12, Department of Scientific and Industrial Research, Wellington, 1983.

    Google Scholar 

  39. Prior, D. J., Deformation processes in the Alpine Fault mylonites, South Island, New Zealand, unpublished PhD thesis, University of Leeds, U. K., 1988.

    Google Scholar 

  40. Reed, J. J., Mylonites, cataclasites, and associated rocks along the Alpine Fault, South Island, New Zealand, New Zealand Journal of Geology and Geophysics, 7, 645–684, 1964.

    Article  Google Scholar 

  41. Rhoades, D. A. and R. J. van Dissen, Estimates of the time-varying hazard of rupture of the Alpine Fault, New Zealand, allowing for uncertainties, New Zealand Journal of Geology and Geophysics, 46, 479–488, 2003.

    Article  Google Scholar 

  42. Sibson, R. H., Fault rocks and fault mechanisms, Geological Society of London Journal, 133, 191–213, 1977.

    Article  Google Scholar 

  43. Sibson, R. H., Continental fault structure and the shallow earthquake source, Geological Society of London Journal, 140, 741–767, 1983.

    Article  Google Scholar 

  44. Sibson, R. H., S. H. White, and B. K. Atkinson, Fault rock distribution and structure within the Alpine Fault Zone: A preliminary account, in The Origin of the Southern Alps, edited by R. I. Walcott and M. M. Cresswell, pp. 55–65, Bulletin of the Royal Society of New Zealand, 18, 1979.

    Google Scholar 

  45. Stern, T. A. and J. H. McBride, Seismic exploration of continental strike-slip zones, Tectonophysics, 286, 63–78, 1998.

    Article  Google Scholar 

  46. Stern, T., P. Molnar, D. Okaya, and D. Eberhart-Phillips, Teleseismic P-wave delays and modes of shortening the mantle lithosphere beneath South Island, New Zealand, Journal of Geophysical Research, 105, 21,615–21,631, 2000.

    Article  Google Scholar 

  47. Sutherland, R., Displacement since the Pliocene along the southern section of the Alpine fault, New Zealand, Geology, 22, 327–331, 1994.

    Article  Google Scholar 

  48. Sutherland, R., The Australia-Pacific boundary and Cenozoic plate motions in the southwest Pacific: Some constraints from Geosat data, Tectonics, 14, 819–831, 1995.

    Article  Google Scholar 

  49. Sutherland, R., Cenozoic bending of New Zealand basement terranes and Alpine Fault displacement: A brief review, New Zealand Journal of Geology and Geophysics, 42, 295–301, 1999.

    Article  Google Scholar 

  50. Sutherland, R. and R. J. Norris, Late Quaternary displacement rate, paleoseismicity, and geomorphic evolution of the Alpine Fault: Evidence from Hokuri Creek, South Westland, New Zealand, New Zealand Journal of Geology and Geophysics, 38, 419–430, 1995.

    Article  Google Scholar 

  51. Sutherland, R., F. Davey, and J. Beavan, Plate boundary deformation in South Island, New Zealand, is related to inherited lithospheric structure, Earth and Planetary Science Letters, 177, 141–151, 2000.

    Article  Google Scholar 

  52. Turnbull, I. M., D. Craw, and R. J. Norris, Pre-Miocene and post-Miocene faulting in the Bannockburn Basin, central Otago, New Zealand, New Zealand Journal of Geology and Geophysics, 36, 107–115, 1993.

    Article  Google Scholar 

  53. Van Avendonk, H. J. A., W. S. Holbrook, D. Okaya, J. K. Austin, F. Davey, and T. Stern, Continental crust under compression: A seismic refraction study of South Island Geophysical Transect I, South Island, New Zealand, Journal of Geophysical Research, 109(B6), B06302, 2004.

    Google Scholar 

  54. Vry, J. K., R. Maas, T. A. Little, D. Phillips, R. Grapes, and M. Dixon, Zoned (Cretaceous and Cenozoic) garnets and the timing of high-grade metamorphism, Southern Alps, New Zealand, Journal of Metamorphic Geology, 22, 137–157, 2004.

    Article  Google Scholar 

  55. Walcott, R. I., Modes of oblique compression: Late Cenozoic tectonics of the South Island, New Zealand, Reviews of Geophysics, 36, 1–26, 1998.

    Article  Google Scholar 

  56. Walcott, R. I., Present tectonics and late Cenozoic evolution of New Zealand, Geophysical Journal of the Royal Astronomical Society, 52, 137–164, 1978.

    Article  Google Scholar 

  57. Wallace, R. E., Grouping and migration of surface faulting and variations in slip rates on faults in the Great Basin Province, Seismological Society of America Bulletin, 77, 868–876, 1987.

    Google Scholar 

  58. Wells, D. L. and K. J. Coppersmith, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Seismological Society of America Bulletin, 84, 974–1002, 1994.

    Google Scholar 

  59. Wells, A., M. D. Yetton, R. P. Duncan, and G. H. Stewart, Prehistoric dates of the most recent Alpine fault earthquakes, New Zealand, Geology, 27, 995–998, 1999.

    Article  Google Scholar 

  60. White, J. C., Transient discontinuities revisited: Pseudotachylytes, plastic instability and the influence of low pore fluid pressure on deformation processes in the mid-crust, Journal of Structural Geology, 18, 1471–1486, 1996.

    Article  Google Scholar 

  61. Wright, T., B. Parsons, and E. Fielding, Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar inter-ferometry, Geophysical Research Letters, 28, 2117–2120, 2001.

    Article  Google Scholar 

  62. Yetton, M. D., A. Wells, and N. J. Traylen, The probabilities and consequences of the next Alpine Fault earthquake, EQC Research Report 95/193, EQC Research Foundation, Wellington, 1998.

    Google Scholar 

  63. Youngson, J. H., D. Craw, C. A. Landis, and K. R. Schmitt, Redefinition and interpretation of late Miocene-Pleistocene terrestrial stratigraphy, Central Otago, New Zealand, New Zealand Journal of Geology and Geophysics, 41, 51–68, 1998.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard J. Norris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norris, R.J. Strain localisation within ductile shear zones beneath active faults: The Alpine Fault contrasted with the adjacent Otago fault system, New Zealand. Earth Planet Sp 56, 1095–1101 (2004). https://doi.org/10.1186/BF03353328

Download citation

Key words

  • Strain localisation
  • faults
  • mylonites
  • neotectonics
  • Alpine Fault
  • New Zealand