Skip to main content

The role of crustal fluids in the tectonic evolution of the Eastern Goldfields Province of the Archaean Yilgarn Craton,Western Australia

Abstract

Gold deposits in the Archaean Eastern Goldfields Province in Western Australia were deposited in greenstone supracrustal rocks by fluids migrating up crustal scale fault zones. Regional ENE-WSW D2 shortening of the supracrustal rocks was detached from lower crustal shortening at a regional sub-horizontal detachment surface which transects stratigraphy below the base of the greenstones. Major gold deposits lie close to D3 strike slip faults that extend through the detachment surface and into the middle to lower crust. The detachment originally formed at a depth near the plastic-viscous transition. In orogenic systems the plastic-viscous transition correlates with a low permeability pressure seal separating essentially lithostatic fluid pressures in the upper crust from supralithostatic fluid pressures in the lower crust. This situation arises from collapse in permeability below the plastic-viscous transition because fluid pressures cannot match the mean stress in the rock. If the low permeability pressure seal is subsequently broken by a through-going fault, fluids below the seal would flow into the upper crust. Large, deeply penetrating faults are therefore ideal for focussing fluid flow into the upper crust. Dilatant deformation associated with sliding on faults or the development of shear zones above the seal will lead to tensile failure and fluid-filled extension fractures. In compressional orogens, the extensional fractures would be subhorizontal, have poor vertical connectivity for fluid movement and could behave as fluids reservoirs. Seismic bright spots at 15–25 km depth in Tibet, Japan and the western United States have been described as examples of present day water or magma concentrations within orogens. The likely drop in rock strength associated with overpressured fluid-rich zones would make this region just above the plastic-viscous transition an ideal depth range to nucleate a regional detachment surface in a deforming crust.

References

  1. Bell, B., B. R. Goleby, T. Fomin, M. G. Nicoll, and A. J. Owen, Detailed gravity and magnetic modelling to contain crustal structures within the Eastern Goldfields, Western Australia, in Crustal Structure and Fluid Flow in the Eastern Goldfields, Western Australia, edited by K. F. Cassidy, Aust. Geol. Surv. Org., Rec., 2000/34, 75–82, 2000.

    Google Scholar 

  2. Blewett, R. B., K. F. Cassidy, D. C. Champion, and A. J. Whittaker, The characterisation of granite deformation events in time across the Eastern Goldfields Province, Western Australia, GeoscI. Aust., Rec., 2004/10 [on CD ROM], 2004.

    Google Scholar 

  3. Brown, L. D., W. Zhao, K. D. Nelson, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, M. Clark, X. Liu, and J. Che, Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling, Science, 274, 1688–1690, 1996.

    Article  Google Scholar 

  4. Connolly, J. A. D. and Y. Y. Podladchikov, Fluid flow in compressive tectonic settings: Implications for midcrustal seismic reflectors and downward fluid migration, J. Geophys Res., 109, B04201, doi:10.1029/2003JB002822, 2004.

    Google Scholar 

  5. Cox, S. F, M. A. Etheridge, and V. J. Wall, Fluid pressure regimes and fluid dynamics during deformation of low-grade metamorphic terranes Implicatons for the genesis of mesothermal gold deposits, in Greenstone Gold and Crustal Evolution. Nuna Conference Volume, edited by F. Robert, P. A. Sheahan, and S. B. Green, Geol. Assoc. Can., pp. 46–53, 1990.

    Google Scholar 

  6. Drummond, B. J., A review of crust/upper mantle structure in the Precambrian areas of Australia and implications for Precambrian crustal evolution, Precamb. Res., 40/41, 101–116, 1988.

    Article  Google Scholar 

  7. Drummond, B. J., B. R. Goleby, C. P. Swager, and P. R. Williams, Constraints on Archaean crustal composition and structure provided by deep seismic sounding in the Yilgarn Craton, Ore Geol. Rev., 8, 117–124, 1993.

    Article  Google Scholar 

  8. Drummond, B. J., B. R. Goleby, and C. P. Swager, Crustal signature of Late Archaean tectonic episodes in the Yilgarn craton, Western Australia: Evidence from deep seismic sounding, Tectonophys, 329, 193–221, 2000a

    Article  Google Scholar 

  9. Drummond, B. J., B. R. Goleby, A. O. Owen, A. N. Yeates, C. Swager, Y. Zhang, and J. K. Jackson, Seismic reflection imaging of mineral systems: three case histories, Geophys, 65, 1852–1861, 2000b.

    Article  Google Scholar 

  10. Drummond, B. J., R. W. Hobbs, and B. R. Goleby, The effects of out-ofplane seismic energy on reflections in crustal-scale 2D seismic sections, Tectonophys, 388, 213–224, 2004.

    Article  Google Scholar 

  11. Etheridge, M. A., V. J. Wall, and R. H. Vernon, The role of fluid phase during regional metamorphism and deformation, J. Met. Geol., 1, 205–226, 1983.

    Article  Google Scholar 

  12. Goleby, B. R., B. J. Drummond, A. Owen, T. Yeates, C. Swager, P. Upton, and J. Jackson, Recent Case histories: Seismic profiling and structurally controlled mineralisation in Australia. How regional seismic helps find minerals, Proceedings of Exploration ′97: 4th Decennial International Conference on Mineral Exploration, Toronto, Canada, edited by A. G. Gubins, 409–420, 1997.

  13. Hammond, R. L. and B. W. Nisbet, Towards a structural and tectonic framework for the central Norseman-Wiluna greenstone belt, Western Australia, in The Archaean: Terrains, Processes and Metallogeny, edited by J. E. Glover and S. E. Ho, Geol. Dept (Key Centre) and Univ. Ext., Univ. West. Aust., Pub., 22, 39–49, 1992.

    Google Scholar 

  14. Hobbs, B. E., A. Ord, and K. Regenauer-Leib, Fluid reservoirs in the crust and mechanical coupling between the upper and lower crust, Earth Planets Space, 56, this issue, 1151–1161, 2004.

    Article  Google Scholar 

  15. Kozlovsky, YE. A., The World’s deepest well, Scientific American, 251(6), 106–112, 1984.

    Article  Google Scholar 

  16. Makovsky, Y. and S. L. Klemperer, Measuring the seismic properties of Tibetan bright spots: Evidence for free aqueous fluids in the Tibetan middle crust, J. GeophyS. Res., 104, 10795–10825, 1999.

    Article  Google Scholar 

  17. Matsumoto, S. and A. Hasegawa, Distinct S wave reflector in the midcrust beneath Nikko-Shirane volcano in the northeastern Japan arc, J. Geophys Res., 101, 3067–3083, 1996.

    Article  Google Scholar 

  18. Myers, J. S., The generation and assembly of an Archaean supercontinent: Evidence from the Yilgarn craton, Western Australia, in Early Precambrian Processes, edited by M. P. Coward and A. C. Ries, Geol. Soc. Lond., pp. 143–154, 1995.

    Google Scholar 

  19. Nakajima, J., T. Matsuzawa, and A. Hasegawa, Three-dimensional structure of Vp, Vs and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids, J. Geophys. Res., 106, 21,843–21,857, 2001.

    Article  Google Scholar 

  20. Ogawa, Y., M. Mishina, Y. Honkura, K. Takahashi, and S. B. Tank, Electromagnetic imaging of the Nagamuchi-Rifu fault and its deep extension. 2nd Int. Symp. Slip and Flow processes in and below the seismogenic region, Tokyo, Abstracts, (no page numbers), 2004.

    Google Scholar 

  21. Petrini, K. and Y. L. Podladchikov, ithospheric pressure-depth relationship in compressive regions of thickened crust, J. Met. Geol., 18, 76–77, 2000.

    Article  Google Scholar 

  22. Reading, A. M., B. L. N. Kennett, and M. C. Dentith, Seismic structure of the Yilgarn Craton, Western Australia. Aust. J. Earth Sci., 50, 427–438, 2003.

    Article  Google Scholar 

  23. Ryberg, T. and G. S. Fuis, The San Gabriel Mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California, Tectonophys, 286, 31–46, 1988.

    Article  Google Scholar 

  24. Sato, H., T. Imaizumi, T. Yoshida, H. Ito, and A. Hasegawa, Tectonic evolution and deep to shallow geometry of Nagamuchi-Rifu active fault system, NE Japan, Earth Planets Space, 54, 1039–1043, 2002.

    Article  Google Scholar 

  25. Sibson, R. H., Fault rocks and fault mechanisms, Geol. Soc. Lond., 133, 191–213, 1977.

    Article  Google Scholar 

  26. Sibson, R. H., Fault structure and mechanics in relation to greenstone gold deposits, in Greenstone Gold and Crustal Evolution, Nuna Conference Volume, edited by F. Robert, P. A. Sheahan, and S. B. Green, Geol. Assoc. Can., 54–60, 1990.

    Google Scholar 

  27. Stuwe, K. and M. Sandiford, Contribution of deviatoric stresses to metamorphic P-T paths: An example appropriate to low-P, high-T metamorphism, J. Met. Geol., 12, 445–454, 1994.

    Article  Google Scholar 

  28. Swager, C. P., Geology of the greenstone terranes in the Kurnalpi-Edjudina region, Yilgarn Craton, West. Aust. Geol. Surv., Rept, 47, Plate 1, 1996.

  29. Swager, C. P., Tectono-stratigraphy of late Archaean greenstone terranes in the southern Eastern Goldfields, Western Australia, PrecamB. Res., 83, 11–42, 1997.

    Article  Google Scholar 

  30. Swager, C. P., B. R. Goleby, B. J. Drummond, M. S. Rattenbury, and P. R. Williams, Crustal structure of granite-greenstone terranes in the Eastern Goldfields, Yilgarn Craton, as revealed by seismic reflection profiling, Precamb. Res., 83, 43–56, 1997.

    Article  Google Scholar 

  31. Umino, N., H. Ujikawa, S. Hori, and, A. Hasegawa, Distinct S-wave reflectors (bright spots) detected beneath Nagamachi-Rifu fault, NE Japan, Earth Planets Space, 54, 1021–1026, 2002.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. J. Drummond.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drummond, B.J., Hobbs, B.E. & Goleby, B.R. The role of crustal fluids in the tectonic evolution of the Eastern Goldfields Province of the Archaean Yilgarn Craton,Western Australia. Earth Planet Sp 56, 1163–1169 (2004). https://doi.org/10.1186/BF03353335

Download citation

Key words

  • Fluids
  • faults
  • shear zones
  • seismic
  • Yilgarn Craton