Skip to main content

On the geoelectric structure of major strike-slip faults and shear zones

Abstract

Magnetotelluric imaging of the San Andreas Fault has shown that seismically-active segments are characterized by a zone of low resistivity in the upper crust. Similar resistivity features are observed on other major strike-slip faults, and may have a common origin in a region of fractured rock, partially or fully saturated with groundwater. Other strike-slip faults show possible zones of reduced resistivity in the mid and lower crust that may be related to zones of ductile shear. Additional MT surveys are required to elucidate the role of fluids in controlling the seismic behaviour of major faults, both in and below the seismogenic zone. A set of synthetic inversions show that MT data is sensitive to the geoelectric structure of a shear zone at mid-crustal depths.

References

  1. Anderson, J. L., R. H. Osborne, and D. E. Palmer, Cataclastic rocks of the San Gabriel Fault—an expression of deformation at deeper crustal levels in the San Andreas Fault Zone, Tectonophysics, 98, 209–251, 1983.

    Article  Google Scholar 

  2. Archie, G. E., The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pet. Eng., 146, 54–62, 1942.

    Google Scholar 

  3. Bai, D. and M. Meju, Deep structure of the Longling-Ruili fault underneath Ruili basin near the eastern Himalayan syntaxis: Insights from MT imaging, Tectonophysics, 364, 135–146, 2003.

    Article  Google Scholar 

  4. Bakun, W. H. and A. G. Lindh, The Parkfield, California, Earthquake Prediction Experiment, Science, 229, 619–624, 1985.

    Article  Google Scholar 

  5. Bedrosian, P. A., M. J. Unsworth, and G. D. Egbert, Magnetotelluric imaging of the creeping segment of the San Andreas Fault near Hollister, Geophys. Res. Lett., 29, 1506, doi:10.1029/2001GL012119, 2002.

    Article  Google Scholar 

  6. Bedrosian, P. A., M. J. Unsworth, G. D. Egbert, and C. H. Thurber, Geophysical images of the creeping segment of the San Andreas Fault: Implications for the role of crustal fluids in the earthquake process, Tectonophysics, 385, doi:10.1016/j.tecto.2004.02.010, 2004.

  7. Blandpied, M. L., D. A. Lockner, and J. D. Byerlee, An earthquake mechanism based on rapid sealing of faults, Nature, 358, 574–576, 1992.

    Article  Google Scholar 

  8. Byerlee, J., Model for episodic flow of high pressure water in fault zones before earthquakes, Geology, 21, 303–306, 1993.

    Article  Google Scholar 

  9. Chester, F. M., J. P. Evans, and R. L. Biegel, Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res., 98, 771–786, 1993.

    Article  Google Scholar 

  10. Clark, M. K. and L. H. Royden, Topographic ooze: Building the Eastern margin of Tibet by lower crustal flow, Geology, 28, 703–706, 2000.

    Article  Google Scholar 

  11. Eberhart-Phillips, D., V. F. Labson, W. D. Stanley, A. J. Michael, and B. D. Rodriguez, Preliminary velocity and resistivity models of the Loma Prieta earthquake region, Geophys. Res. Lett., 17, 1235–1238, 1990.

    Article  Google Scholar 

  12. Electromagnetic Research Group for the Active Fault, Low electrical resistivity along an active fault, J. Geomag. Geoelectr., 34, 103–127, 1982.

    Article  Google Scholar 

  13. Hickman, S., M. Zoback, and W. Ellsworth, Introduction to special section: Preparing for the San Andreas Fault Observatory at Depth, Geophys. Res. Lett., 31, L12S01, doi:10.1029/2004GL020688, 2004.

  14. Hoffman-Rothe, A., O. Ritter, and C. Janssen, Correlation of electrical conductivity an structural damage at a major strike-slip fault in Northern Chile, J. Geophys. Res., 109, doi:10.1029/2004JB003030, 2004.

  15. Irwin, W. P. and I. Barnes, Effect of geologic structure and metamorphic fluids on seismic behavior of the San Andreas Fault system in central and northern California, Geology, 3,, 1975.

    Article  Google Scholar 

  16. Janssen, C., A. Hoffman-Rothe, S. Tauber, and H. Wilke, Internal structure of the pre-cordilleran fault system (Chile)—insights from structural and geophysical observations, J. Structural Geology, 24, 123–143, 2002.

    Article  Google Scholar 

  17. Johnson, P. A. and T. V. McEvilly, Parkfield seismicity: Fluid-driven?, J. Geophys. Res., 100, 12,937–12,950, 1995.

    Article  Google Scholar 

  18. Jones, A. G., R. D. Kurtz, D. E. Boerner, J. A. Craven, McG. W. Neice, D. I. Gough, J. M. DeLaurier, and R. G. Ellis, Electromagnetic constraints on strike-slip fault geometry—The Fraser River Fault System, Geology, 20, 561, 1992a.

    Article  Google Scholar 

  19. Jones, A. G., Electrical conductivity of the continental lower crust, in Continental Lower Crust, edited by D. M. Fountain, R. J. Arculus, and R. W. Kay, Elsevier, Amsterdam, Chapter 3: pp. 81–143, 1992b.

    Google Scholar 

  20. Mackie, R. L., D. W. Livelybrooks, T. R. Madden, and J. C. Larsen, A magnetotelluric investigation of the San Andreas Fault at Carrizo Plain, California, Geophys. Res. Lett., 24, 1847–1850, 1997.

    Article  Google Scholar 

  21. Madden, T. R., G. A. LaTorraca, and S. K. Park, Electrical conductivity variations around the Palmdale section of the San Andreas Fault Zone, J. Geophys. Res., 98, 795–808, 1993.

    Article  Google Scholar 

  22. Mazella, A. and H. F. Morrison, Electrical resistivity variations associated with earthquakes on the San Andreas Fault, Science, 185, 855–857, 1974.

    Article  Google Scholar 

  23. Mitsuhata, Y., Y. Ogawa, M. Mishina, T. Kono, T. Yokokura, and T. Uchida, Electromagnetic heterogeneity of the seismogenic region of 1962 M6.5 Northern Miyagi Earthquake, northeastern Japan, Geophys. Res. Lett., 28(23), 4371–4374, 2001.

    Article  Google Scholar 

  24. Nadeau, R. M., W. Foxall, and T. V. McEvilly, Clustering and periodic recurrence of microearthquakes on the San Andreas Fault at Parkfield, California, Science, 267, 503–507, 1995.

    Article  Google Scholar 

  25. Ogawa, Y., M. Mishina, T. Goto, H. Satoh, N. Oshiman, T. Kasaya, Y. Takahashi, T. Nishitani, S. Sakanaka, M. Uyeshima, Y. Takahashi, Y. Honkura, and M. Matsushima, Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan back arc, Geophys. Res. Lett., 28(19), 3741–3744, 2001.

    Article  Google Scholar 

  26. Ritter, O., T. Ryberg, U. Weckmann, A. Hoffmann-Rothe, A. Abueladas, Z. Garfunkel, and DESERT Research Group, Geophysical images of the Dead Sea Transform in Jordan reveal an impermeable barrier for fluid flow, Geophys. Res. Lett., 30(14), 1741, doi:10.1029/2003GL017541, 2003.

    Article  Google Scholar 

  27. Ritter, O., A. Hoffman-Rothe, P. A. Bedrosian, U. Weckmann, and V. Haak, Electrical conductivity images of active and fossil fault zones, in Microstuctural Evolution and Physical Properties in High Strain Zones, Geological Society of London Special Publications, 2004 (in press).

    Google Scholar 

  28. Rodi, W. and R. L. Mackie, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics, 66, 174–187, 2001.

    Article  Google Scholar 

  29. Sun, J., G. Jin, D. Bai, and L. Wang, Sounding of electrical structure of the crust and upper mantle along the eastern border of Qinghai-Tibet plateau and its tectonic significance, Science in China (Series D), 46, 243–253, 2003.

    Article  Google Scholar 

  30. Tank, S. B., Y. Honkura, Y. Ogawa, N. Oshiman, M. K. Tunçer, M. Matsushima, C. Çelik, E. Tolak, and A. M. Işikara, Resistivity structure in the western part of the fault rupture zone associated with the 1999 İzmit earthquake and its seismogenic implication, Earth Planets Space, 55, 437–442, 2003.

    Article  Google Scholar 

  31. Tank, S. B., Y. Honkura, Y. Ogawa, M. Matsushima, N. Oshiman, M. K. Tuncer, C. Celik, E. Tolak, and A. M. Isikara, Magnetotelluric imaging of the fault rupture area of the 1999 Izmit (Turkey) earthquake, Physics of the Earth and Planetary Interiors, 2004 (in press).

    Google Scholar 

  32. Tapponnier, P., Xu Zhiqin, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, and Y. Jingsui, Oblique stepwise rise and growth of the Tibetan Plateau, Science, 294, 1671–1677, 2001.

    Article  Google Scholar 

  33. Thurber, C. and S. Roecker, Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone, Geophys. Res. Lett., 24, 1591–1594, 1997.

    Article  Google Scholar 

  34. Thurber, C., S. Roecker, K. Roberts, M. Gold, L. Powell, and K. Rittger, Earthquake locations and three-dimensional fault zone structure along the creeping section of the San Andreas Fault near Parkfield, CA: Preparing for SAFOD, Geophys. Res. Lett., 31, doi:10.1029/2002GL016004, 2003.

  35. Unsworth, M. J., G. D. Egbert, and J. R. Booker, High Resolution electromagnetic imaging of the San Andreas Fault in Central California, J. Geophys. Res., 104, 1131–1150, 1999.

    Article  Google Scholar 

  36. Unsworth, M. J., M. Eisel, G. D. Egbert, W. Siripunarvaporn, and P. A. Bedrosian, Along-strike variations in the structure of the San Andreas Fault at Parkfield, California, Geophys. Res. Lett., 27, 3021–3024, 2000.

    Article  Google Scholar 

  37. Unsworth, M. J., W. Wei, A. G. Jones, S. Li, P. A. Bedrosian, J. R. Booker, S. Jin, and M. Deng, Crustal and upper mantle structure of Northern Tibet imaged with magnetotelluric data, J. Geophys. Res., 109, doi:10.1029/2002JB002305, 2004.

  38. Wannamaker, P. E., Affordable magnetotellurics: Interpretation in natural environments, in Three-dimensional Electromagnetics, edited by M. Oristaglio and B. Spies, Geophys. Devel. Ser., no. 7, Soc. Expl. Geophys., pp. 349–374, 1999.

    Google Scholar 

  39. Wannamaker, P. E., Comment on “The petrologic case for a dry lower crust” by B. W D. Yardley and J. W Valley, J. Geophys. Res., 105(B3), 6057–6064, 10.1029/1999JB900324, 2000.

    Article  Google Scholar 

  40. Wannamaker, P. E., G. R. Jiracek, J. A. Stodt, T. G. Caldwell, V. Gonzalez, J. McKnight, and A. D. Porter, Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data, J. Geophys. Res., 107, 2001JB000186, 2002.

  41. Yardley, B. W. D. and J. W. Valley, The petrologic case for a dry lower crust, J. Geophys. Res., 102, 12173, 1997.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martyn Unsworth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Unsworth, M., Bedrosian, P.A. On the geoelectric structure of major strike-slip faults and shear zones. Earth Planet Sp 56, 1177–1184 (2004). https://doi.org/10.1186/BF03353337

Download citation

Key words

  • Magnetotellurics
  • shear zones
  • strike-slip faults
  • earthquake cycle
  • San Andreas Fault