Skip to main content

Volume 58 Supplement 2

Special Issue: The 2004 Great Sumatra Earthquake and Tsunami

Mass-redistribution-induced crustal deformation of global satellite laser ranging stations due to non-tidal ocean and land water circulation

Abstract

The effect of the non-tidal ocean load (NTOL) and the continental water load (CWL) on crustal deformation are calculated for global satellite laser ranging (SLR) stations and on 4°×4° grids (only over the land). For the regions most severely affected, the peak-to-peak displacements due to the NTOL are found to be as large as 3 mm for the horizontal components and 10 mm for the vertical component. The peak-to-peak displacements due to the CWL reach 3 mm for the horizontal components and 15 mm for the vertical component. We apply the time series of NTOL and CWL to precise SLR analysis. The LAGEOS orbit analysis reveals that the Estimating the Circulation and Climate of the Ocean (ECCO) model makes the root mean square (RMS) of the range residual 0.2% smaller, and that the CWL makes it 0.8% smaller, compared with the case where loading displacement is neglected. On the other hand, with the NTOL derived from Topex/Poseidon altimetry data, the SLR orbit fit is not improved.

References

  • Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki, Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res., 107(B4), 2075, 2002.

    Article  Google Scholar 

  • Fan, Y. and H. van den Dool, Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present, J. Geophys. Res., 109, D10102, 2004.

    Article  Google Scholar 

  • Farrell, W. E., Deformation of the Earth by surface loads, Rev. Geophys. and Spac. Phys., 10(3), 751–797, 1972.

    Google Scholar 

  • Fukumori, I., A partitioned Kalman filter and smoother, Mon. Weather Rev., 130, 1370–1383, 2002.

    Article  Google Scholar 

  • Gill, A. E. and P. Niiler, The theory of seasonal variability in the ocean, Deep Sea Res. Oceanogr. Abstr., 141, 141–177, 1973.

    Article  Google Scholar 

  • Köhl, A., D. Stammer, B. Cornuelle, E. Remy, Y. Lu, P. Heimbach, and C. Wunsch, The Global 1° WOCE Synthesis: 1992–2001, ECCO Rep. Ser., Rep. No. 20. Estimating the Circ. and Clim. of the Ocean, Jet Propul. Lab., Pasadena, Calif, 2002.

    Google Scholar 

  • Mangiarotti, S., A. Cazenave, L. Soudarin, and J. F. Cretaux, Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy, J. Geophys. Res., 106, 4277–4292, 2001.

    Article  Google Scholar 

  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, Hydrostatic, quasihydrostatic and nonhydrostatic ocean modeling, J. Geophys. Res., 102, 5733–5752, 1997a.

    Article  Google Scholar 

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766, 1997b.

    Article  Google Scholar 

  • Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, GOTIC2: A program for computation of oceanic tidal loading effect, J. Geod. Soc. Japan, 47(1), 243–248, 2001.

    Google Scholar 

  • Munekane, H. and S. Matsuzaka, Nontidal ocean mass loading detected by GPS observations in the tropical Pacific region, Geophys. Res. Let., 31, L08602, 2004.

    Google Scholar 

  • Otsubo, T., Improving the analysis precision of satellite laser ranging data from centimeter to millimeter range, J. Geod. Soc. Japan, 51(1), 1–16, 2005.

    Google Scholar 

  • Otsubo, T. and G. M. Appleby, System-dependent center-of-mass correcion for spherical geodetic satellites, J. Geophys. Res., 108(B4), 2201, 2003.

    Article  Google Scholar 

  • Petrov, L. and J.-P. Boy, Study of the atmospheric pressure loading signal in very long baseline interferometry observations, J. Geophys. Res., 109, B03405, 2004.

    Google Scholar 

  • Sato, T., Y. Fukuda, Y. Aoyama et al., On the observed annual gravity variation and the effect of sea surface height variations, Phys. Earth Planet. Inter., 123, 45–63, 2001.

    Article  Google Scholar 

  • van Dam, T. M. and T. A. Herring, Detection of atmospheric pressure loading using very long baseline interferometry measurements, J. Geophys. Res., 99, 4505–4518, 1994.

    Article  Google Scholar 

  • van Dam, T. M. and J. Wahr, Modeling environment loading effects: A review, Phys. Chem. Earth, 23(9–10), 1077–1087, 1998.

    Google Scholar 

  • van Dam, T. M., G. Blewitt, and M. B. Heflin, Atmospheric pressure loading effects on Global Positioning System coordinate determinations, J. Geophys. Res., 99, 23,939–23,950, 1994.

    Article  Google Scholar 

  • van Dam, T., J. Wahr, P. C. D. Milly, A. B. Shmakin, G. Blewitt, D. Lavallee, and K. M. Larson, Crustal displacements due to continental water loading, Geophys. Res. Let., 28(4), 651–654, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takiguchi.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Takiguchi, H., Otsubo, T. & Fukuda, Y. Mass-redistribution-induced crustal deformation of global satellite laser ranging stations due to non-tidal ocean and land water circulation. Earth Planet Sp 58, e13–e16 (2006). https://doi.org/10.1186/BF03353365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353365

Key words