Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes

Abstract

Source parameters affecting tsunami generation and propagation for the M w > 9.0 December 26, 2004 and the M w = 8.6 March 28, 2005 earthquakes are examined to explain the dramatic difference in tsunami observations. We evaluate both scalar measures (seismic moment, maximum slip, potential energy) and finite-source representations (distributed slip and far-field beaming from finite source dimensions) of tsunami generation potential. There exists significant variability in local tsunami runup with respect to the most readily available measure, seismic moment. The local tsunami intensity for the December 2004 earthquake is similar to other tsunamigenic earthquakes of comparable magnitude. In contrast, the March 2005 local tsunami was deficient relative to its earthquake magnitude. Tsunami potential energy calculations more accurately reflect the difference in tsunami severity, although these calculations are dependent on knowledge of the slip distribution and therefore difficult to implement in a real-time system. A significant factor affecting tsunami generation unaccounted for in these scalar measures is the location of regions of seafloor displacement relative to the overlying water depth. The deficiency of the March 2005 tsunami seems to be related to concentration of slip in the down-dip part of the rupture zone and the fact that a substantial portion of the vertical displacement field occurred in shallow water or on land. The comparison of the December 2004 and March 2005 Sumatra earthquakes presented in this study is analogous to previous studies comparing the 1952 and 2003 Tokachi-Oki earthquakes and tsunamis, in terms of the effect slip distribution has on local tsunamis. Results from these studies indicate the difficulty in rapidly assessing local tsunami runup from magnitude and epicentral location information alone.

References

  1. Abe, K., Size of great earthquake of 1837-1974 inferred from tsunami data, Journal of Geophysical Research, 84, 1561–1568, 1979.

    Article  Google Scholar 

  2. Abe, K., Estimate of tsunami run-up heights from earthquake magnitudes, in Tsunami: Progress in Prediction, Disaster Prevention and Warning, edited by Y. Tsuchiya and N. Shuto, Kluwer Academic Publishers, Dordrecht, pp. 21–35, 1995.

    Google Scholar 

  3. Abe, K., Tsunami magnitude, http://www.drs.dpri.kyoto-u.ac.jp/sumatra/index-e.html#tsunami_mag, 2005.

    Google Scholar 

  4. Ammon, C. J., C. Ji, H. K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. Wald, Rupture process of the 2004 Sumatra-Andaman earthquake, Science, 308, 1133–1139, 2005.

    Article  Google Scholar 

  5. Andrews, D. J., A stochastic fault model 1. Static case, Journal of Geophysical Research, 85, 3867–3877, 1980.

    Article  Google Scholar 

  6. Banerjee, P., F. F. Pollitz, and R. Bürgmann, The size and duration of the Sumatra-Andaman earthquake from far-field static offsets, Science, 308, 1769–1772, 2005.

    Article  Google Scholar 

  7. Ben-Menahem, A. and M. Rosenman, Amplitude patterns of tsunami waves from submarine earthquakes, Journal of Geophysical Research, 77, 3097–3128, 1972.

    Article  Google Scholar 

  8. Ben-Zion, Y. and J. R. Rice, Dynamic simulations of slip on a smooth fault in an elastic solid, Journal of Geophysical Research, 102,17, 771–17,784, 1997.

    Article  Google Scholar 

  9. Beresnev, I. A., Uncertainties in finite-fault slip inversions: To what extent to believe? (A critical review), Bulletin of the Seismological Society of America, 93, 2445–2458, 2003.

    Article  Google Scholar 

  10. Bilek, S. L. and T. Lay, Tsunami earthquakes possibly widespread manifestations of frictional conditional stability, Geophysical Research Letters, 29, doi:10.1029/2002GL015215, 2002.

  11. Chlieh, M., J. P. Avouac, K. Sieh, L. Prawirodirdjo, Y. Bock, V. Hjorleifsdottir, C. Ji, H. Hebert, A. Sladen, D. Natawidjaja, C. Subarya, and J. Galetzka, Coseismic slip and afterslip associated to the Mw9.14 Aceh-Andaman earthquake [abs.], Eos, Transactions American Geophysical Union, 86, 2005.

  12. Das, S. and C. H. Scholz, Why large earthquakes do no nucleate at shallow depths, Nature, 305, 621–623, 1983.

    Article  Google Scholar 

  13. Dieterich, J. H., Earthquake nucleation on faults with rate- and state-dependent strength, Tectonophysics, 211, 115–134, 1992.

    Article  Google Scholar 

  14. Dmowska, R. and B. V. Kostrov, A shearing crack in a semi-space under plane strain conditions, Archives of Mechanics, 25, 421–440, 1973.

    Google Scholar 

  15. Geist, E. L., Local tsunamis and earthquake source parameters, Advances in Geophysics, 39, 117–209, 1999.

    Article  Google Scholar 

  16. Geist, E. L., Complex earthquake rupture and local tsunamis, Journal of Geophysical Research, 107, doi:10.1029/2000JB000139, 2002.

  17. Geist, E. L. and R. Dmowska, Local tsunamis and distributed slip at the source, Pure and Applied Geophysics, 154, 485–512, 1999.

    Article  Google Scholar 

  18. Hirata, K., E. L. Geist, K. Satake, Y. Tanioka, and S. Yamaki, Slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1) along the Kuril Trench deduced from tsunami waveform inversion, Journal of Geophysical Research, 108, doi:10.1029/2002JB001976, 2003.

  19. Hirata, K., Y. Tanioka, K. Satake, S. Yamaki, and E. L. Geist, The tsunami source area of the 2003 Tokachi-oki earthquake estimated from tsunami travel times and its relationship to the 1952 Tokachi-oki earthquake, Earth Planets Space, 56, 367–372, 2004.

    Article  Google Scholar 

  20. Iida, K., D. C. Cox, and G. Pararas-Carayannis, Preliminary catalog of tsunamis occurring in the Pacific Ocean, 67–10, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, pp. 131, 1967.

    Google Scholar 

  21. Ishii, M., P. M. Shearer, H. Houston, and J. E. Vidale, Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array, Nature, 435, 933–936, 2005.

    Google Scholar 

  22. Jaffe, B. E., G. S. Prasetya, J. C. Borrero, G. Gelfenbaum, P. Ruggiero, R. Morton, B. Peters, E. Kingsley, S. Diposaptono, R. Hidayat, Lukianto, Widjokongko, V. V. Titov, A. Moore, B. McAdoo, L. Dengler, B. Higman, and E. Yulianto, USGS scientists in Sumatra studying recent tsunamis: March 30–April 26, http://walrus.wr.usgs.gov/news/field.html, 2005.

    Google Scholar 

  23. Ji, C., Updated result of the 05/03/28 (Mw 8.5), Sumatra earthquake, http://www.gps.caltech.edu/%7Ejichen/Earthquake/2005/sumatra/sumatra.html, 2005.

    Google Scholar 

  24. Johnson, J. M. and K. Satake, Source parameters of the 1957 Aleutian earthquake from tsunami waveforms, Geophysical Research Letters, 20, 1487–1490, 1993.

    Article  Google Scholar 

  25. Kajiura, K., The leading wave of a tsunami, Bulletin of the Earthquake Research Institute, 41, 535–571, 1963.

    Google Scholar 

  26. Kajiura, K., Tsunami energy in relation to parameters of the earthquake fault model, Bulletin of the Earthquake Research Institute, 56, 415–440, 1981.

    Google Scholar 

  27. Kikuchi, M. and H. Kanamori, Inversion of complex body waves—III, Bulletin of the Seismological Society of America, 81, 2335–2350, 1991.

    Google Scholar 

  28. Krüger, F. and M. Ohrnberger, Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance, Nature, 435, 937–939, 2005.

    Google Scholar 

  29. Lander, J. F., Tsunamis affecting Alaska 1737–1996, No. 31, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Boulder, Colorado, pp. 195, 1996.

    Google Scholar 

  30. Lay, T., H. Kanamori, C. J. Ammon, M. Nettles, S. N. Ward, R. C. Aster, S. L. Beck, S. L. Bilek, M. R. Brudzinski, R. Butler, H. R. DeShon, G. Ektröm, K. Satake, and S. A. Sipkin, The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308, 1127–1133, 2005.

    Article  Google Scholar 

  31. Li, Y., Tsunamis: Non-Breaking and Breaking Solitary Wave Run-Up, KH-R-60, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California, pp. 249, 2000.

    Google Scholar 

  32. Mei, C. C., The Applied Dynamics of Ocean Surface Waves, Advanced Series on Ocean Engieering, 1, World Scientific, Singapore, pp. 740, 1989.

    Google Scholar 

  33. Merrifield, M. A., Y. L. Firing, T. Aarup, W. Agricole, G. Brundrit, D. Chang-Seng, R. Farre, B. Kilonsky, W. Knight, L. Kong, C. Magori, P. Manurung, C. S. McCreery, W. Mitchell, S. Pillay, F. Schindelé, F. Shillington, L. Testut, E. M. S. Wijeratne, P. Caldwell, J. Jardin, S. Nakahara, F. Y. Porter, and N. Turetsky, Tide gauge observations of the Indian Ocean tsunami, December 26, 2004, Geophysical Research Letters, 32, doi:10.1029/2005GL022610, 2005.

  34. Newcomb, K. R. and W. R. McCann, Seismic history and seismotectonics of the Sunda arc, Journal of Geophysical Research, 92, 421–439, 1987.

    Article  Google Scholar 

  35. Newman, A. V. and S. L. Bilek, A comparison of the March 28, 2005 and December 26, 2004 Sumatran earthquakes: Near-trench rupture exciting tsunami generation? [abs.], Eos, Transactions American Geophysical Union, 86(18), Joint Assembly Supplement, Abstract U53B-04, 2005.

    Google Scholar 

  36. Nielsen, S. B. and J. M. Carlson, Rupture pulse characterization: Self-healing, self-similar, expanding solutions in a continuum model of fault dynamics, Bulletin of the Seismological Society of America, 90, 1480–1497, 2000.

    Article  Google Scholar 

  37. Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 75, 1135–1154, 1985.

    Google Scholar 

  38. Okal, E. A., Seismic parameters controlling far-field tsunami amplitudes: A review, Natural Hazards, 1, 67–96, 1988.

    Article  Google Scholar 

  39. Okal, E. A. and A. V. Newman, Tsunami earthquakes: the quest for a regional signal, Physics of the Earth and Planetary Interiors, 124, 45–70, 2001.

    Article  Google Scholar 

  40. Park, J., T. A. Song, J. Tromp, E. A. Okal, S. Stein, G. Roult, E. Clevede, G. Laske, H. Kanamori, P. Davis, J. Berger, C. Braitenberg, M. Van Camp, X. Lei, H. Sun, H. Xu, and S. Rosat, Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science, 308, 1139–1144, 2005.

    Article  Google Scholar 

  41. Pelayo, A. M. and D. A. Wiens, Tsunami earthquakes: Slow thrust-faulting events in the accretionary wedge, Journal of Geophysical Research, 97, 15,321–15,337, 1992.

    Article  Google Scholar 

  42. Polet, J. and H. Kanamori, Shallow subduction zone earthquakes and their tsunamigenic potential, Geophysical Journal International, 142, 684–702, 2000.

    Article  Google Scholar 

  43. Rudnicki, J. W. and M. Wu, Mechanics of dip-slip faulting in an elastic half-space, Journal of Geophysical Research, 100, 22,173–22,186, 1995.

    Article  Google Scholar 

  44. Satake, K., Tsunamis, in International Handbook of Earthquake and Engineering Seismology, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger, pp. 437–451, Academic Press, San Diego, 2002.

  45. Schwartz, S. Y., T. Lay, and L. J. Ruff, Source process of the great 1971 Solomon Islands doublet, Physics of the Earth and Planetary Interiors, 56, 294–310, 1989.

    Article  Google Scholar 

  46. Shaw, B. E., Model quakes in the two-dimensional wave equations, Journal of Geophysical Research, 102, 27,367–27,377, 1997.

    Article  Google Scholar 

  47. Shaw, B. E., Dynamic heterogeneities versus fixed heterogeneities in earthquake models, Geophysical Journal International, 156, 275–286, 2004.

    Article  Google Scholar 

  48. Shaw, B. E. and C. H. Scholz, Slip-length scaling in large earthquakes: Observations and theory and implications for earthquake physics, Geophysical Research Letters, 28, 2995–2998, 2001.

    Article  Google Scholar 

  49. Soloviev, S. L., Recurrence of tsunamis in the Pacific, in Tsunamis in the Pacific Ocean, edited by W. M. Adams, pp. 149–163, East-West Center Press, Honolulu, 1970.

    Google Scholar 

  50. Stein, S. and E. A. Okal, Speed and size of the Sumatra earthquake, Nature, 434, 581–582, 2005.

    Article  Google Scholar 

  51. Synolakis, C. E., The runup of solitary waves, Journal of Fluid Mechanics, 185, 523–545, 1987.

    Article  Google Scholar 

  52. Tadepalli, S. and C. E. Synolakis, Model for the leading waves of tsunamis, Physical Review Letters, 77, 2141–2144, 1996.

    Article  Google Scholar 

  53. Tanioka, Y. and K. Satake, Tsunami generation by horizontal displacement of ocean bottom, Geophysical Research Letters, 23, 861–865, 1996.

    Article  Google Scholar 

  54. Tanioka, Y., Y. Nishimura, K. Hirakawa, F. Imamura, I. Abe, Y. Abe, K. Shindou, H. Matsutomi, T. Takahashi, K. Imai, K. Harada, Y. Namegawa, Y. Hasegawa, Y. Hayashi, F. Nanayama, T. Kamataki, Y. Kawata, Y. Fukasawa, S. Koshimura, Y. Hada, Y. Azumai, K. Hirata, A. Kamikawa, A. Yoshikawa, T. Shiga, M. Kobayashi, and S. Masaka, Tsunami run-up heights of the 2003 Tokachi-oki earthquake, Earth Planets Space, 56, 359–365, 2004.

    Article  Google Scholar 

  55. Titov, V. V. and F. I. González, Implementation and testing of the Method of Splitting Tsunami (MOST) model, ERL PMEL-112, NOAA, pp. 11, 1997.

    Google Scholar 

  56. Titov, V. V. and C. E. Synolakis, Numerical modeling of tidal wave runup, Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 157–171, 1998.

    Article  Google Scholar 

  57. Titov, V. V., F. I. González, E. N. Bernard, J. E. Ebel, H. O. Mofjeld, J. C. Newman, and A. J. Venturato, Real-time tsunami forecasting: Challenges and solutions, Natural Hazards, 35, 40–58, 2005.

    Article  Google Scholar 

  58. Tsai, V. C., M. Nettles, G. Ektröm, and A. M. Dziewonski, Multiple CMT source analysis of the 2004 Sumatra earthquake, Geophysical Research Letters, 32, doi:10.1029/2005GL023813, 2005.

  59. Tsuboi, S., Application of Mwp to tsunami earthquake, Geophysical Research Letters, 27, 3105–3108, 2000.

    Article  Google Scholar 

  60. Tsuboi, S., K. Abe, K. Takano, and Y. Yamanaka, Rapid determination of Mw from broadband P waveforms, Bulletin of the Seismological Society of America, 85, 606–613, 1995.

    Google Scholar 

  61. Ward, S. N., Relationships of tsunami generation and an earthquake source, Journal of Physics of the Earth, 28, 441–474, 1980.

    Article  Google Scholar 

  62. Ward, S. N., On tsunami nucleation II. An instantaneous modulated line source, Physics of the Earth and Planetary Interiors, 27, 273–285, 1982.

    Article  Google Scholar 

  63. Ward, S. N., Tsunamis, in The Encyclopedia of Physical Science and Technology, edited by R. A. Meyers, pp. 175–191, Academic Press, 2002.

    Google Scholar 

  64. Weinstein, S. A. and E. A. Okal, The mantle wave magnitude Mm and the slowness parameter Θ: Five years of real-time use in the context of tsunami warning, Bulletin of the Seismological Society of America, 95, 779–799, 2005.

    Article  Google Scholar 

  65. Wessel, P. and W H. F. Smith, New version of the Generic Mapping Tools released, Eos, Transactions American Geophysical Union, 76, F329, 1995.

    Article  Google Scholar 

  66. Yamanaka, Y and M. Kikuchi, Source process of the recurrent Tokachi-oki earthquake on September 26, 2003 inferred from teleseismic body waves, Earth Planets Space, 55, e21–e24, 2003.

    Article  Google Scholar 

  67. Zheng, G. and J. R. Rice, Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture, Bulletin of the Seismological Society of America, 88, 1466–1483, 1998.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric L. Geist.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geist, E.L., Bilek, S.L., Arcas, D. et al. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth Planet Sp 58, 185–193 (2006). https://doi.org/10.1186/BF03353377

Download citation

Key words

  • 2004 Sumatra Earthquake
  • 2005 Sumatra Earthquake
  • tsunami
  • tsunami generation
  • potential energy
  • slip distribution