Skip to main content

Advertisement

Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes

Article metrics

  • 433 Accesses

  • 35 Citations

Abstract

Source parameters affecting tsunami generation and propagation for the M w > 9.0 December 26, 2004 and the M w = 8.6 March 28, 2005 earthquakes are examined to explain the dramatic difference in tsunami observations. We evaluate both scalar measures (seismic moment, maximum slip, potential energy) and finite-source representations (distributed slip and far-field beaming from finite source dimensions) of tsunami generation potential. There exists significant variability in local tsunami runup with respect to the most readily available measure, seismic moment. The local tsunami intensity for the December 2004 earthquake is similar to other tsunamigenic earthquakes of comparable magnitude. In contrast, the March 2005 local tsunami was deficient relative to its earthquake magnitude. Tsunami potential energy calculations more accurately reflect the difference in tsunami severity, although these calculations are dependent on knowledge of the slip distribution and therefore difficult to implement in a real-time system. A significant factor affecting tsunami generation unaccounted for in these scalar measures is the location of regions of seafloor displacement relative to the overlying water depth. The deficiency of the March 2005 tsunami seems to be related to concentration of slip in the down-dip part of the rupture zone and the fact that a substantial portion of the vertical displacement field occurred in shallow water or on land. The comparison of the December 2004 and March 2005 Sumatra earthquakes presented in this study is analogous to previous studies comparing the 1952 and 2003 Tokachi-Oki earthquakes and tsunamis, in terms of the effect slip distribution has on local tsunamis. Results from these studies indicate the difficulty in rapidly assessing local tsunami runup from magnitude and epicentral location information alone.

References

  1. Abe, K., Size of great earthquake of 1837-1974 inferred from tsunami data, Journal of Geophysical Research, 84, 1561–1568, 1979.

  2. Abe, K., Estimate of tsunami run-up heights from earthquake magnitudes, in Tsunami: Progress in Prediction, Disaster Prevention and Warning, edited by Y. Tsuchiya and N. Shuto, Kluwer Academic Publishers, Dordrecht, pp. 21–35, 1995.

  3. Abe, K., Tsunami magnitude, http://www.drs.dpri.kyoto-u.ac.jp/sumatra/index-e.html#tsunami_mag, 2005.

  4. Ammon, C. J., C. Ji, H. K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. Wald, Rupture process of the 2004 Sumatra-Andaman earthquake, Science, 308, 1133–1139, 2005.

  5. Andrews, D. J., A stochastic fault model 1. Static case, Journal of Geophysical Research, 85, 3867–3877, 1980.

  6. Banerjee, P., F. F. Pollitz, and R. Bürgmann, The size and duration of the Sumatra-Andaman earthquake from far-field static offsets, Science, 308, 1769–1772, 2005.

  7. Ben-Menahem, A. and M. Rosenman, Amplitude patterns of tsunami waves from submarine earthquakes, Journal of Geophysical Research, 77, 3097–3128, 1972.

  8. Ben-Zion, Y. and J. R. Rice, Dynamic simulations of slip on a smooth fault in an elastic solid, Journal of Geophysical Research, 102,17, 771–17,784, 1997.

  9. Beresnev, I. A., Uncertainties in finite-fault slip inversions: To what extent to believe? (A critical review), Bulletin of the Seismological Society of America, 93, 2445–2458, 2003.

  10. Bilek, S. L. and T. Lay, Tsunami earthquakes possibly widespread manifestations of frictional conditional stability, Geophysical Research Letters, 29, doi:10.1029/2002GL015215, 2002.

  11. Chlieh, M., J. P. Avouac, K. Sieh, L. Prawirodirdjo, Y. Bock, V. Hjorleifsdottir, C. Ji, H. Hebert, A. Sladen, D. Natawidjaja, C. Subarya, and J. Galetzka, Coseismic slip and afterslip associated to the Mw9.14 Aceh-Andaman earthquake [abs.], Eos, Transactions American Geophysical Union, 86, 2005.

  12. Das, S. and C. H. Scholz, Why large earthquakes do no nucleate at shallow depths, Nature, 305, 621–623, 1983.

  13. Dieterich, J. H., Earthquake nucleation on faults with rate- and state-dependent strength, Tectonophysics, 211, 115–134, 1992.

  14. Dmowska, R. and B. V. Kostrov, A shearing crack in a semi-space under plane strain conditions, Archives of Mechanics, 25, 421–440, 1973.

  15. Geist, E. L., Local tsunamis and earthquake source parameters, Advances in Geophysics, 39, 117–209, 1999.

  16. Geist, E. L., Complex earthquake rupture and local tsunamis, Journal of Geophysical Research, 107, doi:10.1029/2000JB000139, 2002.

  17. Geist, E. L. and R. Dmowska, Local tsunamis and distributed slip at the source, Pure and Applied Geophysics, 154, 485–512, 1999.

  18. Hirata, K., E. L. Geist, K. Satake, Y. Tanioka, and S. Yamaki, Slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1) along the Kuril Trench deduced from tsunami waveform inversion, Journal of Geophysical Research, 108, doi:10.1029/2002JB001976, 2003.

  19. Hirata, K., Y. Tanioka, K. Satake, S. Yamaki, and E. L. Geist, The tsunami source area of the 2003 Tokachi-oki earthquake estimated from tsunami travel times and its relationship to the 1952 Tokachi-oki earthquake, Earth Planets Space, 56, 367–372, 2004.

  20. Iida, K., D. C. Cox, and G. Pararas-Carayannis, Preliminary catalog of tsunamis occurring in the Pacific Ocean, 67–10, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, pp. 131, 1967.

  21. Ishii, M., P. M. Shearer, H. Houston, and J. E. Vidale, Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array, Nature, 435, 933–936, 2005.

  22. Jaffe, B. E., G. S. Prasetya, J. C. Borrero, G. Gelfenbaum, P. Ruggiero, R. Morton, B. Peters, E. Kingsley, S. Diposaptono, R. Hidayat, Lukianto, Widjokongko, V. V. Titov, A. Moore, B. McAdoo, L. Dengler, B. Higman, and E. Yulianto, USGS scientists in Sumatra studying recent tsunamis: March 30–April 26, http://walrus.wr.usgs.gov/news/field.html, 2005.

  23. Ji, C., Updated result of the 05/03/28 (Mw 8.5), Sumatra earthquake, http://www.gps.caltech.edu/%7Ejichen/Earthquake/2005/sumatra/sumatra.html, 2005.

  24. Johnson, J. M. and K. Satake, Source parameters of the 1957 Aleutian earthquake from tsunami waveforms, Geophysical Research Letters, 20, 1487–1490, 1993.

  25. Kajiura, K., The leading wave of a tsunami, Bulletin of the Earthquake Research Institute, 41, 535–571, 1963.

  26. Kajiura, K., Tsunami energy in relation to parameters of the earthquake fault model, Bulletin of the Earthquake Research Institute, 56, 415–440, 1981.

  27. Kikuchi, M. and H. Kanamori, Inversion of complex body waves—III, Bulletin of the Seismological Society of America, 81, 2335–2350, 1991.

  28. Krüger, F. and M. Ohrnberger, Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance, Nature, 435, 937–939, 2005.

  29. Lander, J. F., Tsunamis affecting Alaska 1737–1996, No. 31, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Boulder, Colorado, pp. 195, 1996.

  30. Lay, T., H. Kanamori, C. J. Ammon, M. Nettles, S. N. Ward, R. C. Aster, S. L. Beck, S. L. Bilek, M. R. Brudzinski, R. Butler, H. R. DeShon, G. Ektröm, K. Satake, and S. A. Sipkin, The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308, 1127–1133, 2005.

  31. Li, Y., Tsunamis: Non-Breaking and Breaking Solitary Wave Run-Up, KH-R-60, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California, pp. 249, 2000.

  32. Mei, C. C., The Applied Dynamics of Ocean Surface Waves, Advanced Series on Ocean Engieering, 1, World Scientific, Singapore, pp. 740, 1989.

  33. Merrifield, M. A., Y. L. Firing, T. Aarup, W. Agricole, G. Brundrit, D. Chang-Seng, R. Farre, B. Kilonsky, W. Knight, L. Kong, C. Magori, P. Manurung, C. S. McCreery, W. Mitchell, S. Pillay, F. Schindelé, F. Shillington, L. Testut, E. M. S. Wijeratne, P. Caldwell, J. Jardin, S. Nakahara, F. Y. Porter, and N. Turetsky, Tide gauge observations of the Indian Ocean tsunami, December 26, 2004, Geophysical Research Letters, 32, doi:10.1029/2005GL022610, 2005.

  34. Newcomb, K. R. and W. R. McCann, Seismic history and seismotectonics of the Sunda arc, Journal of Geophysical Research, 92, 421–439, 1987.

  35. Newman, A. V. and S. L. Bilek, A comparison of the March 28, 2005 and December 26, 2004 Sumatran earthquakes: Near-trench rupture exciting tsunami generation? [abs.], Eos, Transactions American Geophysical Union, 86(18), Joint Assembly Supplement, Abstract U53B-04, 2005.

  36. Nielsen, S. B. and J. M. Carlson, Rupture pulse characterization: Self-healing, self-similar, expanding solutions in a continuum model of fault dynamics, Bulletin of the Seismological Society of America, 90, 1480–1497, 2000.

  37. Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 75, 1135–1154, 1985.

  38. Okal, E. A., Seismic parameters controlling far-field tsunami amplitudes: A review, Natural Hazards, 1, 67–96, 1988.

  39. Okal, E. A. and A. V. Newman, Tsunami earthquakes: the quest for a regional signal, Physics of the Earth and Planetary Interiors, 124, 45–70, 2001.

  40. Park, J., T. A. Song, J. Tromp, E. A. Okal, S. Stein, G. Roult, E. Clevede, G. Laske, H. Kanamori, P. Davis, J. Berger, C. Braitenberg, M. Van Camp, X. Lei, H. Sun, H. Xu, and S. Rosat, Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science, 308, 1139–1144, 2005.

  41. Pelayo, A. M. and D. A. Wiens, Tsunami earthquakes: Slow thrust-faulting events in the accretionary wedge, Journal of Geophysical Research, 97, 15,321–15,337, 1992.

  42. Polet, J. and H. Kanamori, Shallow subduction zone earthquakes and their tsunamigenic potential, Geophysical Journal International, 142, 684–702, 2000.

  43. Rudnicki, J. W. and M. Wu, Mechanics of dip-slip faulting in an elastic half-space, Journal of Geophysical Research, 100, 22,173–22,186, 1995.

  44. Satake, K., Tsunamis, in International Handbook of Earthquake and Engineering Seismology, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger, pp. 437–451, Academic Press, San Diego, 2002.

  45. Schwartz, S. Y., T. Lay, and L. J. Ruff, Source process of the great 1971 Solomon Islands doublet, Physics of the Earth and Planetary Interiors, 56, 294–310, 1989.

  46. Shaw, B. E., Model quakes in the two-dimensional wave equations, Journal of Geophysical Research, 102, 27,367–27,377, 1997.

  47. Shaw, B. E., Dynamic heterogeneities versus fixed heterogeneities in earthquake models, Geophysical Journal International, 156, 275–286, 2004.

  48. Shaw, B. E. and C. H. Scholz, Slip-length scaling in large earthquakes: Observations and theory and implications for earthquake physics, Geophysical Research Letters, 28, 2995–2998, 2001.

  49. Soloviev, S. L., Recurrence of tsunamis in the Pacific, in Tsunamis in the Pacific Ocean, edited by W. M. Adams, pp. 149–163, East-West Center Press, Honolulu, 1970.

  50. Stein, S. and E. A. Okal, Speed and size of the Sumatra earthquake, Nature, 434, 581–582, 2005.

  51. Synolakis, C. E., The runup of solitary waves, Journal of Fluid Mechanics, 185, 523–545, 1987.

  52. Tadepalli, S. and C. E. Synolakis, Model for the leading waves of tsunamis, Physical Review Letters, 77, 2141–2144, 1996.

  53. Tanioka, Y. and K. Satake, Tsunami generation by horizontal displacement of ocean bottom, Geophysical Research Letters, 23, 861–865, 1996.

  54. Tanioka, Y., Y. Nishimura, K. Hirakawa, F. Imamura, I. Abe, Y. Abe, K. Shindou, H. Matsutomi, T. Takahashi, K. Imai, K. Harada, Y. Namegawa, Y. Hasegawa, Y. Hayashi, F. Nanayama, T. Kamataki, Y. Kawata, Y. Fukasawa, S. Koshimura, Y. Hada, Y. Azumai, K. Hirata, A. Kamikawa, A. Yoshikawa, T. Shiga, M. Kobayashi, and S. Masaka, Tsunami run-up heights of the 2003 Tokachi-oki earthquake, Earth Planets Space, 56, 359–365, 2004.

  55. Titov, V. V. and F. I. González, Implementation and testing of the Method of Splitting Tsunami (MOST) model, ERL PMEL-112, NOAA, pp. 11, 1997.

  56. Titov, V. V. and C. E. Synolakis, Numerical modeling of tidal wave runup, Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 157–171, 1998.

  57. Titov, V. V., F. I. González, E. N. Bernard, J. E. Ebel, H. O. Mofjeld, J. C. Newman, and A. J. Venturato, Real-time tsunami forecasting: Challenges and solutions, Natural Hazards, 35, 40–58, 2005.

  58. Tsai, V. C., M. Nettles, G. Ektröm, and A. M. Dziewonski, Multiple CMT source analysis of the 2004 Sumatra earthquake, Geophysical Research Letters, 32, doi:10.1029/2005GL023813, 2005.

  59. Tsuboi, S., Application of Mwp to tsunami earthquake, Geophysical Research Letters, 27, 3105–3108, 2000.

  60. Tsuboi, S., K. Abe, K. Takano, and Y. Yamanaka, Rapid determination of Mw from broadband P waveforms, Bulletin of the Seismological Society of America, 85, 606–613, 1995.

  61. Ward, S. N., Relationships of tsunami generation and an earthquake source, Journal of Physics of the Earth, 28, 441–474, 1980.

  62. Ward, S. N., On tsunami nucleation II. An instantaneous modulated line source, Physics of the Earth and Planetary Interiors, 27, 273–285, 1982.

  63. Ward, S. N., Tsunamis, in The Encyclopedia of Physical Science and Technology, edited by R. A. Meyers, pp. 175–191, Academic Press, 2002.

  64. Weinstein, S. A. and E. A. Okal, The mantle wave magnitude Mm and the slowness parameter Θ: Five years of real-time use in the context of tsunami warning, Bulletin of the Seismological Society of America, 95, 779–799, 2005.

  65. Wessel, P. and W H. F. Smith, New version of the Generic Mapping Tools released, Eos, Transactions American Geophysical Union, 76, F329, 1995.

  66. Yamanaka, Y and M. Kikuchi, Source process of the recurrent Tokachi-oki earthquake on September 26, 2003 inferred from teleseismic body waves, Earth Planets Space, 55, e21–e24, 2003.

  67. Zheng, G. and J. R. Rice, Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture, Bulletin of the Seismological Society of America, 88, 1466–1483, 1998.

Download references

Author information

Correspondence to Eric L. Geist.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geist, E.L., Bilek, S.L., Arcas, D. et al. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth Planet Sp 58, 185–193 (2006) doi:10.1186/BF03353377

Download citation

Key words

  • 2004 Sumatra Earthquake
  • 2005 Sumatra Earthquake
  • tsunami
  • tsunami generation
  • potential energy
  • slip distribution