Skip to main content

Volume 56 Supplement 2

Special Issue: Special section for IUGG workshop: Lithospheric Structure of a Supercontinent:Gondwana

Origins of the lower crustal reflectivity in the Lützow-Holm Complex, Enderby Land, East Antarctica

Abstract

The combination of rock velocities with a seismic signature has been used as a clue to understanding the structure and evolution of the continental lithosphere. The lower crustal reflectivity beneath part of the Pan-African orogeny, the Lützow-Holm Complex (LHC), Western Enderby Land, East Antarctica, has been imaged on single-fold seismic reflection profiles using active seismic studies on the continental ice sheet. The set of velocity layers at middle to lower crustal depths were obtained by modeling the later phases of teleseismic receiver functions observed at Syowa Station (39°E, 69°S), in the LHC. The later phases around 10–16 s from P onset in radial components are explained by assuming a layered lower crustal model with velocity changes of 0.3 km/s in shear waves for 0.5–1.0 km thick layers. The origin of lower crustal reflectivity is discussed in terms of high-pressure laboratory measurements on metamorphic rocks from Western Enderby Land. Lower crustal velocities of 6.9 km/s derived by seismic refraction surveys can be explained by a major composition of mafic pyroxene granulite, as occurs in the Archean Napier Complex. A tectonic model involving collision between the paleo East and West Gondwana blocks during the last stage of Pan-African orogeny is presented to explain the high velocities and reflectivity in the lower crust underlying the LHC. The Napier Complex is considered to have descended eastward under part of the Pan-African belt (LHC), generating a higher-pressure mafic granulite composition. The reflectivity of the lower crust of the LHC may have been enhanced subsequently by extensional stress during the breakup process.

References

  • Ammon, C. J., G. E. Randall, and G. Zandt, On nonuniqueness of receiver function inversion, J. Geophys. Res., 95, 15303–15318, 1990.

    Article  Google Scholar 

  • Anderson, D. L., Superplumes or supercontinents?, Geology, 22, 39–42, 1994.

    Article  Google Scholar 

  • Black, L., S. L. Harley, S. S. Sun, and M. T. McCulloch, The Rayner complex of East Antarctica: complex isotopic systematics within a Protero- zoic mobile belt, Jour. Metamor. Geol., 5, 1–26, 1987.

    Article  Google Scholar 

  • Brown, L. D., COCORP, crustal structure and hydrocarbon exploration in The Potential of Deep Seismic Profiling for Hydrocarbon Exploration, Technip, 135–139, 1990.

    Google Scholar 

  • Brown, L. D., W. Zhao, K. D. Nelson, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, M. Clark, Z. Liu, and J. Che, Bright spots, structure, and mag-matism in southern Tibet from INDEPTH seismic reflection profiling, Science, 274, 1688–1690, 1996.

    Article  Google Scholar 

  • Burke, M. M. and D. M. Fountain, Seismic anisotropy of metapelites from the Ivrea-Verbano zone and Serie dei Laghi (northern Italy), Phys. Earth Planet. Inter., 78, 301–317, 1990.

    Google Scholar 

  • Christensen, N. I. and W. D. Mooney, Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 100, 9761–9788, 1995.

    Article  Google Scholar 

  • Clowes, R. M., F. A. Cook, Z. Hajnal, J. Hall, J. Lewry, S. Lucas, and R. Wardle, Canada’s LITHOPROBE Project (Collaborative multidisci-plinary geoscience reseach leads to new understanding of continental evolution), Episodes, 22, 3–20, 1999.

    Google Scholar 

  • Cook, F. A., A. J. Velden, and K. W. Hall, Frozen subduction in Canada’s Northwest Territories: Lihoprobe deep lithospheric reflection profiling of the western Canadian Shield, Tectonics, 18, 1–24, 1999.

    Article  Google Scholar 

  • Della Vedova, B., G. Pellis, H. Trey, J. Zhang, A. K. Cooper, J. Makris, and the ACRUP Working Group, Crustal structure of the transantarctic mountains, western Ross Sea, in The Antarctic Region: Geological Evolution and Processes, edited by C. A. Ricci, pp. 609–618, 1997.

    Google Scholar 

  • Diaconescu, C. C., J. H. Knapp, L. D. Brown, D. N. Steer, and M. Stiller, Precambrian Moho offset and tectonic stability of the East European platform from the URSEIS deep seismic profile, Geology, 26, 211–214, 1998.

    Article  Google Scholar 

  • Eaton, D. W., G. M. Ross, and R. M. Clowes, Seismic-reflection and potential-field studies of the Vulcan structure, western Canada: A Paleo- proterozoic Pyrenees?, J. Geophys. Res., 104, 23255–23269, 1999.

    Article  Google Scholar 

  • Fountain, D. M., M. H. Salisbury, and J. Percival, Seismic structure of the continental crust based on rock velocity measurements from the Ka-puskasing uplift, J. Geophys. Res., 95, 1167–1186, 1990.

    Article  Google Scholar 

  • Fuchs, K. and G. Müller, Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. Astron. Soc., 23, 417–433, 1971.

    Article  Google Scholar 

  • Gans, P. G., An open-system, two-layer crustal stretching model for the eastern Great Basin, Tectonics, 6, 1–12, 1987.

    Article  Google Scholar 

  • Goff, J. A., K. Holliger, and A. Levander, Modal fields: A new method for characterization of random velocity heterogeneity, Geophys. Res. Lett., 21, 493–496, 1994.

    Article  Google Scholar 

  • Goleby, B. R., T. MacCready, B. J. Drummond, and A. Goncharov, The Mount Isa geodynamic transect-crustal implications, structure and evolution of the Australian Continent, Geodynamics, 26, 109–117, 1998.

    Article  Google Scholar 

  • Grunow, A., R. Hanson, and T. Wilson, Were aspects of Pan-African deformation linked to Iapetus opening?, Geology, 24, 1063–1066, 1996.

    Article  Google Scholar 

  • Harley, S. and B. J. Hensen, Archean and Proterozoic high-grade terranes of East Antarctica (40°-80°E): a case study of diversity in granulite facies, in High Temperature Metamorphism and Crustal Anatexis, edited by J. R. Ashworth and M. Brown, pp. 320–370, 1990.

    Chapter  Google Scholar 

  • Hiroi, Y., K. Shiraishi, and y Motoyoshi, Late Proterozoic paired metamor-phic complexes in East Antarctica, with special reference to the tectonic significance of ultramafic rocks, in Geological Evolution of Antarctica, edited by M. R. A. Thomson, J. A. Crame, and J. W. Thomson, pp. 83–87, 1991.

    Google Scholar 

  • Holliger, K., A. R. Levander, and J. A. Goff, Stochastic modeling of the reflective lower crust: Petrophysical and geological evidence from the Ivrea zone (northern Italy), J. Geophys. Res., 98, 11967–11980, 1993.

    Article  Google Scholar 

  • Hyndman, R. D. and P. M. Shearer, Water in the lower continental crust: modelling magnetotelluric and seismic reflection results, Geophys. J., 98, 343–365, 1989.

    Article  Google Scholar 

  • Ikami, A. and K. Ito, Crustal structure in the Mizuho Plateau, East Antarctica, by a Two-Dimensional Ray Approximation, Jour. Geod., 6, 271–283, 1986.

    Article  Google Scholar 

  • Ikami, A., K. Ito, K. Shibuya, and K. Kaminuma, Deep crustal structure along the profile between Syowa and Mizuho Stations, East Antarctica, Mem. Natl. Inst. Polar Res., Ser. C (Earth Sci.), 15, 19–28, 1984.

    Google Scholar 

  • Ishikawa, M., E. Shingai, and M. Arima, Archean continental crust under the Pan-African orogenic belt, East Antarctica, Eos, Trans., 82, 1182, 2001.

    Google Scholar 

  • Ito, K., Cut-off depth of seismicity and large earthquakes near active volcanoes in Japan, Tectonophysics, 217, 11–21, 1993.

    Article  Google Scholar 

  • Ito, K. and A. Ikami, Upper crustal structure of the Prince Olav Coast, East Antarctica, Mem. Nat. Inst. Polar Res., Ser. C (Earth Sci.), 15, 13–18, 1984.

    Google Scholar 

  • Ito, K. and M. Kanao, Detection of reflected waves from the lower crust on Mizuho Plateau, East Antarctica, Antarct. Rec., 39, 233–242, 1996.

    Google Scholar 

  • Kanao, M., Variations in the crust structure of the Lützow-Holm Bay region, East Antarctica using shear wave velocity, Tectonophysics, 270, 43–72, 1997.

    Article  Google Scholar 

  • Kanao, M., M. Ishikawa, M. Yamashita, K. Kaminuma, and L. D. Brown, Structure and evolution of the East Antarctic lithosphere: Tectonic implications for the development and dispersal of Gondwana, Gondwana Research, 7, 31–41, 2004.

    Article  Google Scholar 

  • King, E. C. and A. C. Bell, Seismic reflection investigation of George VI Sound, Antarctic Peninsula, in The Antarctic Region: Geological Evolution and Processes, edited by C. A. Ricci, pp. 697–703, 1997.

    Google Scholar 

  • Lawson, C. L. and R. J. Hanson, Solving least squares problems, Englewood Cliffs, NJ, Prentice-Hall Inc., 158–173, 1974.

    Google Scholar 

  • Lawver, L. A., L. M. Gahagan, and I. W. D. Dalziel, A tight fit-early Mesozoic Gondwana, a plate reconstruction perspective, Mem. Natl. Inst. Polar Res., Spec. Issue, 53, 214–229, 1998.

    Google Scholar 

  • Le Gall, B., Evidence of an imbricate crustal thrust belt in the southern British Variscides: Contributions of Southwestern Approaches Traverse (SWAT) deep seismic reflection profiling recorded through the English Channel and the Celtic Sea, Tectonics, 9, 283–302, 1990.

    Article  Google Scholar 

  • Miyamachi, H., H. Murakami, T. Tsutsui, S. Toda, T. Minta, and M. Yanag-isawa, A seismic refraction experiment in 2000 on the Mizuho Plateau, East Antarctica, Antarct. Rec, 45, 101–147, 2001 (in Japanese with English abstract).

    Google Scholar 

  • Miyamachi, H., S. Toda, T. Matsushima, M. Takada, Y. Takahashi, D. Kamiya, A. Watanabe, M. Yamashita, and M. Yanagisawa, A seismic refraction and wide-angle reflection exploration in 2002 on the Mizuho Plateau, East Antarctica, Antarct. Rec, 47, 32–71, 2003 (in Japanese with English abstract).

    Google Scholar 

  • Motoyoshi, Y., S. Matsubara, and H. Matsueda, P-T evolution of the granulite-facies of the Lützow-Holm Bay region, East Antarctica, Evolution of Metamorphic belts, Geol. Soc. Spec. Iss., 43, 325–329, 1989.

    Article  Google Scholar 

  • Nogi, Y., N. Seama, and N. Isezaki, The directions of magnetic anomaly lin-eations in Enderby Basin, off Antarctica, in Recent Progress in Antarctic Earth Science, edited by y Yoshida, K. Kaminuma, and K. Shiraishi, pp. 649–654, 1992.

    Google Scholar 

  • Ogawa, Y., Deep crustal resistivity structure revealed by wideband magnetotellurics-Tohoku and Hokkaido region, Ph.D thesis, the University of Tokyo, 1992.

    Google Scholar 

  • Osanai, Y., T. Toyoshima, M. Owada, T. Tsunogae, T. Hokada, and W. A. Crowe, Geology of ultrahigh-temperature metamorphic rocks from Tonagh Island in the Napier Complex, East Antarctica, Polar Geosci., 12, 1–28, 1999.

    Google Scholar 

  • Owens, T. J., G. Zandt, and S. R. Taylor, Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms, J. Geophys. Res., 89, 7783–7795, 1984.

    Article  Google Scholar 

  • Pollack, H. N. and D. S. Chapman, Mantle heat flow, Earth Planet. Sci. Lett., 34, 174–184, 1977.

    Article  Google Scholar 

  • Rudnick, R. L. and D. M. Fountain, Nature and composition of the continental crust: a lower crustal perspective, Rev. Geophys., 33, 267–309, 1995.

    Article  Google Scholar 

  • Sandmeier, K. J. and F. Wenzel, Lower crustal petrology from wide-angle P- and S-wave measurements in the Black Forest, Tectonophysics, 173, 495–505, 1990.

    Article  Google Scholar 

  • Sheraton, J. W, R. J. Tingey, L. P. Black, L. A. Offe, and D. J. Ellis, Geology of Enderby Land and western Kemp Land, Antarctica, Bulletin, Bureau of Mineral Resources, Australia, 223, 51, 1987.

    Google Scholar 

  • Shingai, E., M. Ishikawa, and M. Arima, P-wave velocity in ultrahigh temperature granulites from the Archean Napier Complex, East Antarctica, Polar Geoscience, 14, 165–179, 2001.

    Google Scholar 

  • Shiraishi, K., D. J. Ellis, Y. Hiroi, C. M. Fanning, Y. Motoyoshi, and Y. Nakai, Cambrian orogenic belt in East Antarctica and Sri Lanka: implication for Gondwana assembly, J. Geol., 102, 47–65, 1994.

    Article  Google Scholar 

  • Shiraishi, K., D. J. Ellis, C. M. Fanning, Y. Hiroi, H. Kagami, and Y. Motoyoshi, Re-examination of the metamorphic and protolith ages of the Rayner Complex, Antarctica: evidence for the Cambrian (Pan-African) regional metamorphic event, in The Antarctic Region: Geological Evolution and Processes, edited by C. A. Ricci, pp. 79–88, 1997.

    Google Scholar 

  • Smithson, S. B. and R. A. Johnson, Crustal structure of the western U. S. based on reflection seismology Geophysical Framework of the Continental Unites States, Geol. Soc. Am. Mem., 172, 577–612, 1989.

    Article  Google Scholar 

  • Sroda, P., M. Grad, and A. Guterch, Seismic models of the Earth’s crustal structure between the South Pacific and the Antarctic Peninsula, in The Antarctic Region: Geological Evolution and Processes, edited by C. A. Ricci, pp. 685–689, 1997.

    Google Scholar 

  • Storey, B. C., The role of mantle plumes in continental breakup: case histories from Gondwanaland, Nature, 377, 301–308, 1995.

    Article  Google Scholar 

  • Tsutsui, T., H. Murakami, H. Miyamachi, S. Toda, and M. Kanao, P-wave velocity structure of the ice sheet and the shallow crust beneath the Mizuho traverse route, East Antarctica, from seismic refraction analysis, Polar Geosci., 14, 195–211, 2001a.

    Google Scholar 

  • Tsutsui, T., M. Yamashita, H. Murakami, H. Miyamachi, S. Toda, and M. Kanao, Reflection profiling and velocity structure beneath Mizuho traverse route, East Antarctica, Polar Geosci., 14, 212–225, 2001b.

    Google Scholar 

  • Turcotte, D. L. and G. Schubert, Geodynamics applications of continuum physics to geological problem, 1–450, 1982.

    Google Scholar 

  • Warner, M., Basalts, water, or shear zones in the lower continental crust?, Tectonophysics, 173, 163–174, 1990.

    Article  Google Scholar 

  • Yamashita, M., H. Miyamachi, T. Matsushima, S. Toda, M. Takada, A. Watanabe, and M. Kanao, Deep crustal structure beneath the Mizuho Plateau, East Antarctica from seismic exploration, XXIII General Assembly of the International Union of Geodesy and Geophysics, SW03/10A/D-004, 2003.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masaki Kanao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanao, M., Ishikawa, M. Origins of the lower crustal reflectivity in the Lützow-Holm Complex, Enderby Land, East Antarctica. Earth Planet Sp 56, 151–162 (2004). https://doi.org/10.1186/BF03353399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353399

Key words

  • crustal reflectivity
  • receiver functions
  • metamorphic rock velocities
  • Lützow-Holm Complex
  • Pan-African orogeny