Ando, M., Source mechanisms and tectonic significance of historical earth-quakes along the Nankai trough, Japan, Tectonophysics, 27, 119–140, 1975.
Article
Google Scholar
Dieterich, J. H., Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168, 1979.
Article
Google Scholar
Harada, S., A. Yoshida, and T. Aketagawa, Configuration of the Philippine Sea slab and seismic activity in the Tokai region, Bull. Earthq. Res. Inst. Univ. Tokyo, 73, 291–304, 1998 (in Japanese with English abstract).
Google Scholar
Ishibashi, K., Specification of a soon-to-occur seismic faulting in the Tokai district, central Japan, based upon seismotectonics, in Earthquake Prediction: An International Review, edited by D. W. Simpson and P. G. Richards, American Geophysical Union, Washington, D. C., pp. 297–332, 1981.
Google Scholar
Ishibashi, K. and K. Satake, Problems on forecasting great earthquakes in the subduction zones around Japan by means of paleoseismology, J. Seism. Soc. Japan, 50, 1–21, 1998 (in Japanese with English abstract).
Google Scholar
Kato, N., Seismic cycle on a strike-slip fault with rate- and state-dependent strength in an elastic layer overlying a viscoelastic half-space, Earth Planets Space, 54, 1077–1083, 2002.
Article
Google Scholar
Kato, N. and T. Hirasawa, A model for possible crustal deformation prior to a coming large interplate earthquake in the Tokai district, Central Japan, Bull. Seism. Soc. Am., 89, 1401–1417, 1999.
Google Scholar
Kato, N. and T. Hirasawa, Effect of a large outer rise earthquake on seismic cycles of interplate earthquakes: A model study, J. Geophys. Res., 105, 653–662, 2000.
Article
Google Scholar
Kuroki, H., H. M. Ito, and A. Yoshida, A three-dimensional simulation of crustal deformation accompanied by subduction in the Tokai region, central Japan, Phys. Earth Planet. Inter., 132, 39–58, 2002.
Article
Google Scholar
Kuroki, H., H. M. Ito, and A. Yoshida, Strain and stress changes in the Tokai region of central Japan expected from a 3D subduction model, Phys. Earth Planet. Inter., 135, 231–252, 2003a.
Article
Google Scholar
Kuroki, H., H. M. Ito, H. Takayama, and A. Yoshida, 3-D simulation of the occurrence of slow slip events in the Tokai region with a rate- and state-dependent friction law, Bull. Seism. Soc. Am., 2003b (to be submitted).
Google Scholar
Matsu’ura, M. and T. Iwasaki, Study on coseismic and postseismic crustal movements associated with the 1923 Kanto earthquake, Tectonophysics, 97, 201–215, 1983.
Article
Google Scholar
Mikumo, T. and M. Ando, A search into the faulting mechanism of the 1891 great Nobi earthquake, J. Phys. Earth, 24, 63–87, 1976.
Article
Google Scholar
Mogi, K., Seismicity in western Japan and long-term earthquake forecasting, in Earthquake Prediction: An International Review, edited by D. W. Simpson and P. G. Richards, American Geophysical Union, Washington, D. C., pp. 43–51, 1981.
Google Scholar
Pollitz, F. F. and I. J. Sacks, Consequences of stress changes following the 1891 Nobi earthquake, Japan, Bull. Seism. Soc. Am., 85, 796–807, 1995.
Google Scholar
Press, W. H., B. P. Frannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, second edition, Cambridge Univ. Press, New York, 1992.
Google Scholar
Ruina, A. L., Slip instability and state variable friction law, J. Geophys. Res., 88, 10359–10370, 1983.
Article
Google Scholar
Seno, T., S. Stein, and A. E. Gripp, A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941–17948, 1993.
Article
Google Scholar