Open Access

Numerical simulations of mid-ocean ridge hydrothermal circulation including the phase separation of seawater

Earth, Planets and Space201456:BF03353403

https://doi.org/10.1186/BF03353403

Received: 8 September 2003

Accepted: 27 January 2004

Published: 29 June 2014

The Erratum to this article has been published in Earth, Planets and Space 2014 56:BF03352502

Abstract

Phase separation of seawater is an important process controlling the dynamics and chemistry of hydrothermal circulation. We numerically investigate hydrothermal circulation in porous media, including phase separation of seawater. Seawater enters the crust at the seafloor, is heated at depth, and returns to the seafloor as hydrothermal fluids. The seafloor and the bottom of the calculation region are set at depths of 2500 m and 4000 m from the sea surface, respectively. The temperature at the base of the calculation region is set at 600°C. Under these pressure and temperature ranges, supercritical phase separation is inevitable. Here we focus on steady-state conditions, as a first step to investigate the complex process of convection with phase separation. Under these conditions, we demonstrate that phase separation leads to a two-layer structure. Seawater circulates vigorously in the upper layer, and this overlies a stagnant lower layer formed by sinking of dense brine. We find that the key quantity which governs this structure is the ratio of the relative velocity between the two phases to the mean flow velocity in the transition zone between the two layers. As the relative velocity increases, the brine layer becomes thick, and the transition zone becomes thin. Under steady state conditions, the mean salinity at the seafloor should be the same as that of seawater because the total mass of salt should be conserved. Fluids which vent near the ridge axis are more saline than seawater, whereas fluids which vent more than about 100 m away from the axis are less saline than seawater.

Key words

Hydrothermal circulation phase separation porous media

Notes

Authors’ Affiliations

(1)
Department of Earth and Planetary Sciences, Nagoya University

References

  1. Anderko, K. and K. S. Pitzer, Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K, Geochim. Cosmochim. Acta, 57, 1657–1680, 1993.View ArticleGoogle Scholar
  2. Bai, W. M., W. Y. Xu, and R. P. Lowell, The dynamics of submarine geother-mal heat pipes, Geophys. Res. Lett., 30, doi:10.1029/2002GL016176, 2003.Google Scholar
  3. Batchelor, G. K., An Introduction to Fluid Dynamics, 635 pp., Cambridge University Press, Cambridge, 1967.Google Scholar
  4. Bear, J., Dynamics of Fluids in Porous Media, 764 pp., Dover, New York, 1988.Google Scholar
  5. Becker, K., Measurements of the permeability of the sheeted dikes in Hole 504B, ODP LEG 111, Proc. Ocean Dril. Prog., Sci. Results, 111, 317–325, 1989.Google Scholar
  6. Berndt, M. E. and W. E. Seyfried, Jr., Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids, Geochim. Cosmochim. Acta, 54, 2235–2245, 1990.View ArticleGoogle Scholar
  7. Bischoff, J. L. and R. J. Rosenbauer, Salinity variations in submarine hydrothermal systems by layered double-diffusive convection, J. Geol., 97, 613–623, 1989.View ArticleGoogle Scholar
  8. Blankenbach, B., F. Busse, U. Christensen, L. Cserepes, D. Gunkel, U. Hansen, H. Harder, G. Jarvis, M. Koch, G. Marquart, D. Moore, P. Olson, H. Schmeling, and T. Schnaubelt, A Benchmark comparison for mantle convection codes, Geophys. J. Int., 98, 23–38, 1989.View ArticleGoogle Scholar
  9. Butterfield, D. A., G. J. Massoth, R. E. McDuff, J. E. Lupton, and M. D. Lilley, Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca ridge: subseafloor boiling and subsequent fluid-rock interaction, J. Geophys. Res., 95, 12895–12921, 1990.View ArticleGoogle Scholar
  10. Cherkaoui, A. S. M. and W. S. D. Wilcock, Characteristics of high Rayleigh number two-dimensional convection in an open-top porous layer heated from below, J. Fluid Mech., 394, 241–260, 1999.View ArticleGoogle Scholar
  11. Christensen, U., Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. R. astr. Soc, 77, 343–384, 1984.View ArticleGoogle Scholar
  12. Elder, J. W., Steady free convection in a porous medium heated from below, J. Fluid Mech., 27, 29–48, 1967.View ArticleGoogle Scholar
  13. Fehn, U., K. E. Green, R. P. Von Herzen, and L. M. Cathles, Numerical models for the hydrothermal field at the Galapagos spreading center, J. Geophys. Res., 88, 1033–1048, 1983.View ArticleGoogle Scholar
  14. Fisher, A. T., Permeability within basaltic oceanic crust, Rev. Geophys., 36, 143–182, 1998.View ArticleGoogle Scholar
  15. Fontaine, F. Jh., M. Rabinowicz, and J. Boulègue, Permeability changes due to mineral diagenesis in fractured crust: Implications for hydrothermal circulation at mid-ocean ridges, Earth Planet. Sci. Lett., 184, 407–425, 2001.View ArticleGoogle Scholar
  16. Fornari, D. J. and R. W. Embley, Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studies, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophys. Monogr., vol. 91, edited by S. E. Humphris et al., pp. 1–46, AGU, Washington, D.C., 1995.Google Scholar
  17. Fournier, R. O., Conceptual models of brine evolution in magmatic-hydrothermal systems, U. S. Geol. Surv. Prof. Pap., 1350, 1487–1506, 1987.Google Scholar
  18. Haar, J. L., J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI units, 320 pp., Hemisphere, New York, 1984.Google Scholar
  19. Ishii, M., Thermo-Fluid Dynamic Theory of Two-Phase Flow, 248 pp., Eyrolles, Paris, 1975.Google Scholar
  20. Jupp, T. and A. Schultz, A thermodynamic explanation for black smoker temperatures, Nature, 403, 880–883, 2000.View ArticleGoogle Scholar
  21. Kelley, D. S., P. T. Robinson, and J. G. Malpas, Processes of brine generation and circulation in the oceanic crust: Fluid inclusion evidence from the Troodos Ophiolite, Cyprus, J. Geophys. Res., 97, 9307–9322, 1992.View ArticleGoogle Scholar
  22. Kelley, D. S., J. A. Baross, and J. R. Delaney, Volcanoes, fluids, and life at mid-ocean ridge spreading centers, Annu. Rev. Earth Planet. Sci., 30, 385–491, 2002.View ArticleGoogle Scholar
  23. Koshizuka, S., Computational Fluid Dynamics, 223 pp., Baifukan, Tokyo, 1997 (in Japanese).Google Scholar
  24. Lasaga, A. C, Kinetics Theory in the Earth Sciences, 811 pp, Princeton University Press, Princeton, New Jersey, 1998.View ArticleGoogle Scholar
  25. Lowell, R. P., Modeling continental and submarine hydrothermal systems, Rev. Geophys., 29, 457–476, 1991.View ArticleGoogle Scholar
  26. Lowell, R. P. and L. N. Germanovich, Evolution of a brine-saturated layer at the base of a ridge-crest hydrothermal system, J. Geophys. Res., 102, 10245–10255, 1997.View ArticleGoogle Scholar
  27. Lowell, R. P. and W. Xu, Sub-critical two-phase seawater convection near a dike, Earth Planet. Sci. Lett., 174, 385–396, 2000.View ArticleGoogle Scholar
  28. Lowell, R. P., P. A. Rona, and R. P. Von Herzen, Seafloor hydrothermal systems, J. Geophys. Res., 100, 327–352, 1995.View ArticleGoogle Scholar
  29. Martin, J. T. and R. P. Lowell, Precipitation of quartz during high-temperature, fracture-controlled hydrothermal upflow at ocean ridges: Equilibrium versus linear kinetics, J. Geophys. Res., 105, 869–882, 2000.View ArticleGoogle Scholar
  30. Mével, C. and M. Cannat, Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges, in Ophiolite Genesis and Evolution of the Oceanic Lithosphere, edited by Tj. Peters et al., pp. 293–312, Kluwer Academic, Dordrecht, 1991.View ArticleGoogle Scholar
  31. Nehlig, P., Fracture and permeability analysis in magma-hydrothermal transition zones in the Samail ophiolite (Oman), J. Geophys. Res., 99, 589–601, 1994.View ArticleGoogle Scholar
  32. Nehlig, P. and T. Juteau, Flow porosities, permeabilities, and preliminary data on fluid inclusions and fossil thermal-gradients in the crustal sequence of the Sumail ophiolite (Oman), Tectonophys., 151, 199–221, 1988.View ArticleGoogle Scholar
  33. Nield, D. A. and A. Bejan, Convection in Porous Media, second edition, 546 pp., Springer-Verlag, New York, 1999.View ArticleGoogle Scholar
  34. Palliser, C. and R. McKibbin, A model for deep geothermal brines, I: T-p- Xstate-space description, Transport in Porous Media, 33, 65–80, 1998a.View ArticleGoogle Scholar
  35. Palliser, C. and R. McKibbin, A model for deep geothermal brines, III: Thermodynamic properties—Enthalpy and viscosity, Transport in Porous Media, 33, 155–171, 1998b.View ArticleGoogle Scholar
  36. Pitzer, K. S., J. C. Peiper, and R. H. Busey, Thermodynamic properties of aqueous sodium chloride solutions, J. Phys. Chem. Ref. Data, 13, 1–102, 1984.View ArticleGoogle Scholar
  37. Raithby, G. D., Skew upstream differencing schemes for problems involving fluid flow, Comp. Methods Appl. Mech. Eng., 9, 153–164, 1976.View ArticleGoogle Scholar
  38. Schoofs, S. and U. Hansen, Depletion of a brine layer at the base of ridge-crest hydrothermal systems, Earth Planet. Sci. Lett., 180, 341–353, 2000.View ArticleGoogle Scholar
  39. Schoofs, S. and F. J. Spera, Transition to chaos and flow dynamics of thermochemical porous medium convection, Transport in Porous Media, 50, 179–195, 2003.View ArticleGoogle Scholar
  40. Schoofs, S., F. J. Spera, and U. Hansen, Chaotic thermohaline convection in low-porosity hydrothermal systems, Earth Planet. Sci. Lett., 174, 213–229, 1999.View ArticleGoogle Scholar
  41. Schoofs, S., R. A. Trompert, and U. Hansen, The formation and evolution of layered structures in porous media: Esffects of porosity and mechanical dispersion, Phys. Earth Planet. Int., 118, 205–225, 2000.View ArticleGoogle Scholar
  42. Sinton, J. M. and R. S. Detrick, Mid-ocean ridge magma chambers, J. Geophys. Res., 97, 197–216, 1992.View ArticleGoogle Scholar
  43. Travis, B. J., D. R. Janecky, and N. D. Rosenberg, Three-dimensional simulation of hydrothermal circulation at mid-ocean ridges, Geophys. Res. Lett., 18, 1441–1444, 1991.View ArticleGoogle Scholar
  44. Von Damm, K. L., Controls on the chemistry and temporal variability of seafloor hydrothermal fluids, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophys. Monogr., vol. 91, edited by S. E. Humphris et al., pp. 222–247, AGU, Washington, D.C., 1995.Google Scholar
  45. Von Damm, K. L., M. D. Lilley, W. C. Shanks, III, M. Brockington, A. M. Brey, K. M. O’Grady, E. Olson, A. Graham, G. Proskurowski, and the SouEPR Science Party, Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise, Earth Planet. Sci. Lett., 206, 365–378, 2003.View ArticleGoogle Scholar
  46. Wilcock, W. S. D., Cellular convection models of mid-ocean ridge hydrothermal circulation and the temperatures of black smoker fluids, J. Geophys. Res., 103, 2585–2596, 1998.View ArticleGoogle Scholar

Copyright

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2004