Skip to main content

Volume 56 Supplement 2

Special Issue: Special section for IUGG workshop: Lithospheric Structure of a Supercontinent:Gondwana

Atmospheric density and pressure inferred from the meteor diffusion coefficient and airglow O2b temperature in the MLT region

Abstract

Atmospheric density and pressure in the upper mesosphere-lower thermosphere (MLT) region, around 90 km, are inferred from the meteor trail ambipolar diffusion coefficients, D, and simultaneously observed airglow O2b rotational temperatures. For the present study simultaneous observation data from the meteor radar and SATI imaging spectrometer taken at Shigaraki MU radar observatory (34.9°N, 136.1°E) were used. From the 18 winter nights of data, it is observed that in most of the cases nocturnal variation of the O2 temperature has a good correlation with D at 90 to 92 km. The inferred densities at 90 km showed a negative correlation with temperature variation, suggesting a constant pressure process. The O2 emission intensity shows a good correlation with the temperature, and negative correlation with the density variation. The OH rotational temperature and D at 87 km also showed similar results to the case of the O2 temperature.

References

  • Baker, D. J. and J. A. T. Stair, Rocket measurements of the altitude distributions of the hydroxyl airglow, Physica Scripta, 37, 611–622, 1988.

    Article  Google Scholar 

  • Bittner, M., D. Offermann, H. H. Graef, M. Donner, K. Hamilton, An 18-year time series of OH temperatures and middle atmosphere decadal variations, J. Atmos. Sol. Terr. Phys., 64, 1147–1166, 2002.

    Article  Google Scholar 

  • Campbell, I. M. and C. N. Gray, Rate constants for O(3P) recombination and association with N(4S), Chem. Phys. Lett., 8, 259, 1973.

    Google Scholar 

  • Cervera, M. A. and I. M. Reid, Comparison of atmospheric parameters derived from meteor observations with CIRA, Radio Sci., 35(3), 833–843, 2000.

    Article  Google Scholar 

  • Chilson, P. B., P. Czechowsky, and G. Schmidt, A comparison of ambipolar diffusion coefficients in meteor trains using VHF radar and UV lidar, Geophys. Res. Letts., 23(20), 2745–2748, 1996.

    Article  Google Scholar 

  • Greer, R. G. H., D. P. Murtagh, I. C. McDade, P. H. G. Dickinson, L. Thomas, D. B. Jenkins, J. Stegman, E. J. Llewellyn, G. Witt, D. J. Mackinnon, and E. R. Williams, Eton 1: A data base pertinent to the study of energy transfer in the oxygen nightglow, Planet. Space Sci., 34, 771–788, 1986.

    Article  Google Scholar 

  • Hocking, W. K., Temperatures using radar-meteor decay times, Geophys. Res. Letts., 26(21), 3297–3300, 1999.

    Article  Google Scholar 

  • Hocking, W. K., T. Thayaparan, and J. Jones, Meteor decay times and their use in determining a diagnostic mesospheric temperature-pressure parameter: methodology and one year of data, Geophys. Res. Letts., 24(23), 2977–2980, 1997.

    Article  Google Scholar 

  • Jones, W., The decay of radar echoes from meteors with particular reference to their use in the determination of temperature fluctuations near the mesopause, Ann. Geophysicae, 13, 1104–1106, 1995.

    Article  Google Scholar 

  • Makhlouf, U. B., R. H. Picard, and J. R. Winick, Photochemical-dynamical modeling of the measured response of airglow to gravity waves, J. Geo-phys. Res., 100(D6), 11289–11311, 1995.

    Article  Google Scholar 

  • Makhlouf, U. B., R. H. Picard, J. R. Winick, and T. F. Tuan, A model for the response of the atomic oxygen 557.7 nm and the OH Meinel airglow to atmospheric gravity waves in a realistic atmosphere, J. Geophys. Res., 103(D6), 6261–6269, 1998.

    Article  Google Scholar 

  • Meinel, A. B., OH emission bands in the spectrum of the night sky. I, Trans. Amer. Geophys. Union, 31, 21, 1950.

    Article  Google Scholar 

  • Nakamura, T., T. Tsuda, M. Tsutsumi, K. Kita, T. Uehara, S. Kato, and S. Fukao, Meteor wind observations with the MU radar, Radio Sci., 26(4), 857–869, 1991.

    Article  Google Scholar 

  • Nakamura, T., T. Tsuda, S. Fukao, H. Takahashi, and R. A. Buriti, P. P. Batista, M. Tsutsumi, M. Ishii, K. Igarashi, H. Fukunishi, Y. Yamada, A. Nomura, T. D. Kawahara, K. Kobayashi, C. Nagasawa, M. Abo, and M. J. Taylor, Studies of the MLT regions using the MU radar and simultaneous observations with OH spectrometer and other optical instruments, Adv. Space Res., 19, 643–652, 1997.

    Article  Google Scholar 

  • Shiokawa, K., Y. Katoh, M. Satoh, M. K. Ejiri, T. Ogawa, T. Nakamura, T. Tsuda, and R. H. Wiens, Development of optical mesosphere thermosphere imagers (OMTI), Earth Planets Space, 51, 887–896, 1999.

    Article  Google Scholar 

  • Takahashi, H., B. R. Clemesha, D. M. Simonich, S. M. L. Melo, N. R. Teixeira, A. Eras, J. Stegman, and G. Witt, Rocket measurements of the equatorial airglow: Multifot 92 data base, J. Atmos. Terr. Phys., 58(16), 1943–1961, 1996.

    Article  Google Scholar 

  • Takahashi, H., P. P. Batista, R. A. Buriti, D. Gobbi, T. Nakamura et al., Simultaneous measurements of airglow OH emission and meteor wind by a scanning photometer and the MU radar, J. Atmos. Solar Terr. Phys., 60, 1649–1668, 1998.

    Article  Google Scholar 

  • Takahashi, H., T. Nakamura, T. Tsuda, R. A. Buriti, and D. Gobbi, First measurement of atmospheric density and pressure by meteor diffusion coefficient and airglow OH temperature in the mesopause region, Geo-phys. Res. Letts., 29(8), 1165/GL014101, 2002.

    Google Scholar 

  • Tsutsumi, M., T. Tsuda, T. Nakamura, and S. Fukao, Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere radar, Radio Sci., 29(3), 599–610, 1994.

    Article  Google Scholar 

  • Watanabe, T., M. Nakamura, and T. Ogawa, Rocket measurements of O2 atmospheric and OH Meinel bands in the airglow, J. Geophys. Res., 86, 5768–5774, 1981.

    Article  Google Scholar 

  • Wiens, R. H., S. P. Zhang, R. N. Peterson, and G. G. Shepherd, MORTI: A mesopause oxygen rotational temperature imager, Planet. Space Sci., 39, 1363–1375, 1991.

    Article  Google Scholar 

  • Wiens, R. H., A. Moise, S. Brown, S. Sargoytchev, R. N. Peterson, G. G. Shepherd, M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, and R. Rodrigo, SATI: A spectral airglow temperature imager, Adv. Space Res., 19, 677–680, 1997.

    Article  Google Scholar 

  • Witt, G., J. Stegman, B. H. Solheim, and E. J. Llewellyn, A measurement of the O2(b) atmospheric band and the OI(1S) green line in the nightglow, Planet. Space Sci., 27, 341–350, 1979.

    Article  Google Scholar 

  • Witt, G., J. Stegman, D. O. Murtagh, I. C. McDade, R. G. H. Greer, P. H. G. Dickinson, and D. B. Jenkins, Collisional energy transfer and the excitation of O2(b) in the atmosphere, Journal of Photochemistry, 25, 365–378, 1984.

    Article  Google Scholar 

  • Yu, J. R. and C. Y. She, Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N, 105W), J. Geophys. Res., 100(D4), 7441–7452, 1995.

    Article  Google Scholar 

  • Zhang, S. P. and G. G. Shepherd, The influence of the diurnal tide on the O(1S) and OH emission rates observed by WINDII on UARS, Geophys. Res. Lett., 26(4), 529–532, 1999.

    Article  Google Scholar 

  • Zhang, S. P., R. G. Roble, and G. G. Shepherd, Tidal influence on the oxygen and hydroxyl nightglows: Wind imaging interferometer observations and thermosphere/ionosphere/mesosphere electrodynamics general circulation model, J. Geophys. Res., 106(A10), 21381–21393, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Takahashi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Nakamura, T., Shiokawa, K. et al. Atmospheric density and pressure inferred from the meteor diffusion coefficient and airglow O2b temperature in the MLT region. Earth Planet Sp 56, 249–258 (2004). https://doi.org/10.1186/BF03353407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353407

Key words

  • Airglow
  • meteor trail
  • temperature
  • density
  • pressure