Skip to main content

Table 1 Physical and dynamical parameters of the selected bodies

From: PIONEERS: a 6DoF motion sensor to measure rotation and tides in the Solar System

Body

r (km)

Mass (kg)

Parent body mass (\(10^{24} \text{kg}\))

Mean orbital distance d (km)

\(T_{\text{orb}}\) (day)

\(\Omega _0\) \([\textrm{rad}\,\textrm{s}^{-1}]\)

\({\dot{\Omega }}_0\) \([\textrm{rad}\,\textrm{s}^{-2}]\)

\(A_{\text L} [\circ ]\)

Tidal acceleration (\(\textrm{m}\textrm{s}^{-2}\))

\(k_2\)

\(h_2\)

Dimorphos

\({75.5\times 10^{-3}}\)

\(4.84\times 10^{9}\)

Didymos: \(5.557\times 10^{-13}\)

1.20

0.474

\(1.46\times 10^{-4}\)

\(2.14\times 10^{-8}\)

[7.00,45.00]

This study

\(1.694\times 10^{-6}\)

[1.72,2.55]\(\times 10^{-4}\)

[2.86,4.25]\(\times 10^{-4}\)

This study

Phobos

11.08

\(1.06\times 10^{16}\)

Mars: 0.642

\(9.40\times 10^{3}\)

0.319

\(2.28\times 10^{-4}\)

\(5.20\times 10^{-8}\)

[1.08,1.10]

Lainey (2021)

\(5.710\times 10^{-4}\)

[0.53,5.30]\(\times 10^{-4}\)

[0.88,8.80]\(\times 10^{-4}\)

Le Maistre et al. (2013)

Europa

1560.80

\(4.80\times 10^{22}\)

Jupiter: 1898.125

\(6.71\times 10^{5}\)

3.551

\(4.92\times 10^{-4}\)

\(2.42\times 10^{-7}\)

[2.42,3.80]\(\times 10^{-2}\)

Van Hoolst et al. (2013)

\(1.226\times 10^{-3}\)

[1.20,1.30]

[2.3,2.7]\(\times 10^{-1}\)

Van Hoolst et al. (2013)

Io

1821.49

\(8.93\times 10^{22}\)

- ” -

\(4.22\times 10^{5}\)

1.769

\(4.11\times 10^{-5}\)

\(1.69\times 10^{-9}\)

[0.53,3.12]\(\times 10^{-1}\)

Van Hoolst et al. (2020)

\(6.129\times 10^{-3}\)

[5.1,8.3]\(\times 10^{-2}\)

[0.09,2.1]

Van Hoolst et al. (2020)

Titan

2574.73

\(1.35\times 10^{23}\)

Saturn: 568.317

\(1.22\times 10^{6}\)

15.945

\(1.10\times 10^{-4}\)

\(1.20\times 10^{-8}\)

[4.19,7.69]\(\times 10^{-3}\)

Van Hoolst et al. (2013)

\(8.922\times 10^{-5}\)

[5.49,6.83]\(\times 10^{-1}\)

[1.30,1.70]

Iess (2012), Durante et al. (2019)

Enceladus

252.10

\(1.08\times 10^{20}\)

\(2.38\times 10^{5}\)

1.372

\(5.30\times 10^{-5}\)

\(2.81\times 10^{-9}\)

[1.05,1.35]\(\times 10^{-1}\)

Thomas (2016)

\(7.774\times 10^{-4}\)

[1.00,7.00]\(\times 10^{-2}\)

[0.15,1.9]\(\times 10^{-1}\)

Van Hoolst et al. (2016), Baland et al. (2016)

Triton

1352.60

\(2.14\times 10^{22}\)

Neptune: 102.409

\(3.55\times 10^{5}\)

5.877

\(1.24\times 10^{-5}\)

\(1.53\times 10^{-1}\)

[3.2,5.4]\(\times 10^{-6}\)

This study

\(2.870\times 10^{-4}\)

[0.1,3.4]\(\times 10^{-1}\)

[0.1,1.2]

This study

Moon

1737.40

\(7.346\times 10^{22}\)

Earth: 5.972

\(3.84\times 10^{5}\)

27.322

\(2.66\times 10^{-6}\)

\(7.08\times 10^{-12}\)

[4.66,4.67]\(\times 10^{-3}\)

Rambaux and Williams (2010)

\(1.223\times 10^{-5}\)

[2.22,2.26]\(\times 10^{-2}\)

[3.64,3.78]\(\times 10^{-2}\)

Konopliv (2013), Lemoine (2013)

Mars

3389.50

\(6.417\times 10^{24}\)

Sun: 1988500

1.52 au

686.97

\(7.09\times 10^{-5}\)

\(5.02\times 10^{-9}\)

[1.22,3.25]\(\times 10^{-6}\)

Konopliv et al. (2020)

\(2.805\times 10^{-8}\)

[1.66,1.82] \(\times 10^{-1}\)

[3.08,3.38]\(\times 10^{-1}\)

Konopliv et al. (2020)

  1. References for Dimorphos are Daly (2023) and Thomas (2023)
  2. All other radii are taken from Archinal et al. (2018)
  3. Masses and orbital parameters values are from the Jet Propulsion Laboratory—Solar System Dynamics website
  4. For the Moon, we consider the Lunar Laser Ranging (LLR) uncertainty on the libration as the signature of the interior signal to retrieve
  5. For Mars, we consider the uncertainties in the LOD variations at the orbital period (annual terms) as the level of precision to reach in order to further constrain the Mars rotation variations and thereby the planet’s atmospheric cycles
  6. The \(h_2\) values have been estimated from several Mars interior models such that they match the range of the measured \(k_2\) values (A. Rivoldini personal communication)