Skip to main content

The 1998 Miyako fireball’s trajectory determined from shock wave records of a dense seismic array

Abstract

A high velocity passage of a meteoroid through the atmosphere generates a shock wave with a conical front. When the shock front arrives at the surface, it causes high frequency ground motions that are registered on the seismograms. We can use seismological data to determine the trajectory of the meteoroid in the atmosphere. A strong shock wave from the 1998 Miyako fireball is recorded by more than 20 stations in a dense array of seismographs installed in the northeastern region of Honshu Island, Japan. We determine the velocity and the trajectory of the fireball in the upper atmosphere using the arrival times of the shock wave at the stations.

References

  • Brown, P., D. O. ReVelle, E. Tagliaferri, and A. R. Hildebrand, An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records, Meteorit. Planet. Sci., 37, 661–675, 2002.

    Article  Google Scholar 

  • Cevolani, G., The explosion of the bolide over Lugo di Romagna (Italy) on 19 January 1993, Planet. Space Sci., 42, 767–775, 1994.

    Article  Google Scholar 

  • Halliday, I., A. A. Griffin, and A. T. Blackwell, The Innisfree Meteorite fall: A photographic analysis of fragmentation, dynamics and luminosity, Meteoritics, 16, 153–170, 1981.

    Article  Google Scholar 

  • Halliday, I., A. A. Griffin, and A. T. Blackwell, Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids, Meteoritics, 31, 185–217, 1996.

    Article  Google Scholar 

  • Japan Fireball Network, JN980329a Orbit, http://www2.cnet.ne.jp/c-shimo/JN980329aOrbit.html, 1998.

  • Kanamori, H., J. Mori, D. L. Anderson, and T. Heaton, Seismic excitation by the space shuttle Columbia, Nature, 349, 781–782, 1991.

    Article  Google Scholar 

  • McIntosh, B. A., M. D. Watson, Infrasound from a radar-observed meteor, Can. J. Phys., 54, 655–662, 1976.

    Article  Google Scholar 

  • Mori, J. and H. Kanamori, Estimating Trajectory of Supersonic Objects using arrival Times of Sonic Booms, U. S. Geol. Survey Open-File Rept., 91-48, 1991.

  • Nagasawa, K., An analysis of sonic boom from a Great Fireball on May 10, 1977, recorded on seismographs of volcano observations, Bull. Earthq. Res. Inst. Univ. Tokyo, 53, 271–280, 1978 (in Japanese with English abstract).

    Google Scholar 

  • Nagasawa, K. and K. Miura, Aerial Path Determination of a Great Fireball from Sonic Boom Records on Seismographs, Bull. Earthq. Res. Inst. Univ. Tokyo, 62, 579–588, 1987 (in Japanese with English abstract).

    Google Scholar 

  • ReVelle, D. O., On meteor-generated infrasound, J. Geophys. Res., 81, 1217–1230, 1976.

    Article  Google Scholar 

  • ReVelle, D. O., Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves, Ann. NY Acad. Sci., 822, 284–302, 1997.

    Article  Google Scholar 

  • Tatum, J. B., Fireballs: Interpretation of airblast data, Meteorit. Planet. Sci., 34, 571–585, 1999.

    Article  Google Scholar 

  • Wessel, P. and W. H. G. Smith, New improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, 579, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Ishihara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishihara, Y., Tsukada, S., Sakai, S. et al. The 1998 Miyako fireball’s trajectory determined from shock wave records of a dense seismic array. Earth Planet Sp 55, e9–e12 (2003). https://doi.org/10.1186/BF03351752

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351752

Key words

  • Shockwave
  • fireball
  • trajectory
  • seismic array