Skip to main content

Comprehensive paleomagnetic study of a succession of Holocene olivine-basalt flow: Xitle Volcano (Mexico) revisited

Abstract

A detailed paleomagnetic study of a young Late Holocene olivine-basalt flow from the Xitle volcano in the southern Basin of Mexico was completed to evaluate the consistency and reliability of the record derived from fresh well-preserved and exposed lava flows. One-hundred oriented standard paleomagnetic cores corresponding to 10 different lava effusion episodes were collected from unit-flow V. Thermomagnetic analyses show that bulk magnetic properties and remanence is carried in most cases by Ti-poor titanomagnetite, presumably resulting from oxy-exsolution processes during the initial flow cooling. Unblocking temperature and coercivity suggests pseudo-single domain magnetic grains for these (titano)magnetites. Thermal and alternating field demagnetizations show well-defined univectorial magnetizations. Most sites present a mean direction with small angular dispersion around the dipolar direction for central Mexico. The overall mean direction (N = 10, Dec = 1.1°, Inc = 34.1°, k = 531 and α95 = 2.1°) is characterized by small angular dispersion and inclination close to the dipolar value for the locality. Anisotropy ofmagnetic susceptibility lineation agrees with the geologically-inferred flow direction. Various samples from the 10 lava flows were selected for Thellier paleointensity experiments because of their stable remanent magnetization and relatively low within-site dispersion. According to reliability parameters, the obtained paleointensities are of reasonably good quality. Nine mean paleointensities range between 48.6 and 73.9 μT. The overall mean paleointensity of 59.9–7.7 μT is higher than the present-day field of 43 μT, consistent with the global data for this time-period. Most samples presented alteration during the cooling rate test, and no correction was made to these samples. Those samples on which cooling-rate correction was applied give a flow mean lower than the raw paleointensity data, as was expected.

References

  1. Arnold, J. T. and W. F. Libby, Radiocarbon dates, Science, 113, 111–120, 1951.

    Article  Google Scholar 

  2. Badilla-Cruz, R. R., Estudio petrológico de la lava de la parte noreste del Pedregal de San Angel, D.F., Bol. Soc. Geol. Mex., 38, 40–57, 1977.

    Google Scholar 

  3. Baer, E. M., R. V. Fisher, M. Fuller, and G. Valentine, Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility, J. Geophys. Res., 102, 22,565–22,586, 1997.

    Article  Google Scholar 

  4. Biggin, A. J. and D. N. Thomas, The application of acceptance criteria to results of Thellier palaeointensity experiments performed on samples with pseudo-single-domain-like characteristics, Phys. Earth Planet. Inter., 138, 279–287, 2003.

    Article  Google Scholar 

  5. Biggin, A. J., H. N. Böhnel, and F. R. Zuñiga, How many palaeointensity determinations are required from a single lava flow to constitute a reliable average?, Geophys. Res. Lett., 30(11), 1575, doi:10,1029/2003GL017146, 2003.

    Article  Google Scholar 

  6. Böhnel, H., J. Morales, C. Caballero, L. Alva-Valdivia, G. McIntosh, S. Gonzalez, and G. Sherwood, Variation of rock magnetic parameters and paleointensities over a single holocene lava flow, J. Geomag. Geoelectr., 49, 523–542, 1997.

    Article  Google Scholar 

  7. Böhnel, H., A. J. Biggin, D. Walton, J. Shaw, and J. A. Share, Microwave palaeointensities from a recent Mexican lava flow, baked sediments and reheated pottery, Earth Planet. Sci. Lett., 6751, 1–16, 2003.

    Google Scholar 

  8. Buddington, A. F. and D. H. Lindsley, Iron-titanium oxide minerals and synthetic equivalents, J. Petrol., 5, 310–357, 1964.

    Article  Google Scholar 

  9. Bullard, F. M., Volcanoes of the Earth, University of Queensland Press, Saint Lucia, 1976.

    Google Scholar 

  10. Calvo, M., M. Orévot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of paleointensity experiments: a study on historical lava flows from Mt Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

    Article  Google Scholar 

  11. Cañon-Tapia, E. and H. Pinkerton, The anisotropy of magnetic susceptibility of lava flows: an experimental approach, J. Volcanol. Geotherm. Res., 98, 219–233, 2000.

    Article  Google Scholar 

  12. Chauvin, A., Y. Garcia, Ph. Lanos, and F. Laubenheimer, Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France, Phys. Earth Planet. Int., 120, 111–136, 2000.

    Article  Google Scholar 

  13. Chauvin, A., P. Roperch, and S. Levi, Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave-up behavior on paleointensity determinations by the Thellier method, Phys. Earth Planet. Inter., 150, 265–286, 2005.

    Article  Google Scholar 

  14. Coe, R. S., S. C. Grommé, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific non-dipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  15. Coe, R. S., J. Riisager, G. Plenier, R. Leonhardt, and D. Krása, Multidomain behavior during Thellier palaeointensity experiments: results from the 1915 Mt. Lassen flow, Phys. Earth Planet. Inter., 147, 141–153, 2004.

    Article  Google Scholar 

  16. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1997.

    Article  Google Scholar 

  17. Delgado, H., R. Molinero, P. Cervantes, J. Nieto-Obregón, R. Lozano-Santa Cruz, H. L. Macias-González, C. Mendoza-Rosales, and G. Silva-Romo, Geology of the Xitle volcano in southern Mexico City—A 2000-year-old monogenetic volcano in an urban area, Rev. Mex. Ciencias Geol., 15(2), 115–131, 1998.

    Google Scholar 

  18. Fox, J. M. W. and M. J. Aitkin, Cooling-rate dependence of thermoremanent magnetization, Nature, 283, 462–463, 1980.

    Article  Google Scholar 

  19. Gonzalez, S., G. Sherwood, H. Böhnel, and E. Schnepp, Palaeosecular variation in central Mexico over the last 30,000 years, Geophys. J. Int., 130, 201–219, 1997.

    Article  Google Scholar 

  20. Gonzalez, S., A. Pastrana, C. Siebe, and G. Duller, Timing of the prehistoric eruption of Xitle Volcano and the abandonment of Cuicuilco Pyramid, Southern Basin of Mexico, in: The Archaeology of Geological Catastrophies, Geol. Soc. London, Sp. Pub., 171, 205–224, 2000.

    Article  Google Scholar 

  21. Grommé, C. S., T. L. Wright, and D. L. Peck, Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii, J. Geophys. Res., 74, 5277–5293, 1969.

    Article  Google Scholar 

  22. Haggerty, S. E., Oxidation of opaque mineral oxides in basalts, in Oxide Minerals, edited by D. Rumble, Mineral. Soc. Am., Short Course Notes, Hg1-Hg100pp, 1976.

    Google Scholar 

  23. Heider, F. and D. J. Dunlop, Two types of chemical remanent magnetization during oxidation of magnetite, Phys. Earth Planet. Inter., 46, 24–45, 1987.

    Article  Google Scholar 

  24. Herrero-Bervera, E., J. Urrutia-Fucugauchi, A. L. Martin del Pozzo, H. Bohnel, and J. Guerrero, Normal amplitude Brunhes paleosecular variation at low-latitudes: a paleomagnetic record from the Trans-Mexican Volcanic Belt., Geophys. Res. Lett., 13, 1442–1445, 1986.

    Article  Google Scholar 

  25. Kirschvink, J. L., The least-square line and plane and analysis of palaeomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718, 1980.

    Article  Google Scholar 

  26. Kissel, C. and C. Laj, Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determinations: application to Hawaiian basaltic longcores, Phys. Earth Planet. Int., 147, 155–159, 2004.

    Article  Google Scholar 

  27. Knight, M. D. and G. P. L. Walker, Magma flow directions in dikes of the Koolau complex, Oahu, determined from magnetic fabric studies, J. Geophys. Res., 93, 4301–4319, 1988.

    Article  Google Scholar 

  28. Kosterov, A. and M. Prévot, Possible mechanisms causing failure of the Thellier palaeointensity experiments in some basalts, Geophys. J. Int., 134, 554–572, 1998.

    Article  Google Scholar 

  29. Luhr, J. F. and T. Simkin, (Eds), Paricutin. The volcano born in a Mexican cornfield, Geoscience Press, Inc., Arizona, USA, 427 pp., 1993.

    Google Scholar 

  30. McElhinny, M. W. and W. E. Senanayake, Variations in the geomagnetic dipole 1: the past 50,000 years, J. Geomag. Geoelectr., 34, 39–51, 1982.

    Article  Google Scholar 

  31. Mochizuki, N., H. Tsunakawa, Y. Oishi, S. Wakai, K. Wakabayashi, and Y. Yamamoto, Palaeointensity study of the Oshima 1986 lava in Japan: implications for the reliability of the Thellier and LTD-DHT Shaw methods, Phys. Earth Planet. Inter., 146, 395–416, 2004.

    Article  Google Scholar 

  32. Morales-Contreras, J. J., Determinación de paleointensidades del campo geomagnetico para el Cuaternario en la Sierra Chichinautzin, Ms.Sc. Thesis, UNAM, Mexico, 1995.

    Google Scholar 

  33. Morales, J., A. Goguitchaishvili, L. M. Alva-Valdivia, and J. Urrutia-Fucugauchi, An attempt to determine the microwave paleointensity on Paricutin volcano lava flows (Central Mexico), Geofis. Inter., 42(1), 95–100, 2003.

    Google Scholar 

  34. Nagata, T., R. M. Fisher, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

    Article  Google Scholar 

  35. Nagata, T., K. Kobayashi, and E. J. Swarz, Archeomagnetic intensity studies of South and Central America, J. Geomag. Geoelectr., 17, 399–405, 1965.

    Article  Google Scholar 

  36. Nishitani, T. and M. Kono, Effects of low-temperature oxidation on the remanence properties of titanomagnetites, J. Geomag. Geoelectr., 41, 19–38, 1989.

    Article  Google Scholar 

  37. O’Reilly, W., Rock and Mineral Magnetism, 220 pp., Blackie & Son, 1984.

    Google Scholar 

  38. Özdemir, O., Inversion of titanomaghemites, Phys. Earth Planet. Int., 65, 125–136, 1987.

    Article  Google Scholar 

  39. Özdemir, O. and D. J. Dunlop, Chemico-viscous remanent magnetization in Fe3O4γFe2O3 system, Science, 243, 1043–1047, 1989.

    Article  Google Scholar 

  40. Palmer, H. C. and W. D. MacDonald, Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations, Tectonophys., 307, 207–218, 1999.

    Article  Google Scholar 

  41. Pan, Y., M. Hill, and R. Zhu, Paleomagnetic and paleointensity study of an Oligocene-Miocene lava sequence from the Hannouba basalts in northern China, Phys. Earth Planet. Inter., 151, 21–35, 2005.

    Article  Google Scholar 

  42. Siebe, C., Age and archaeological implications of Xitle volcano, southwestern Basin of Mexico-City, J. Volcanol. Geoth. Res., 104, 45–64, 2000.

    Article  Google Scholar 

  43. Sternberg, R. S., Archaeomagnetic palaeointensity in the American southwest during the last 2000 years, Phys. Earth Planet. Int., 56, 1–17, 1989.

    Article  Google Scholar 

  44. Tanaka, H. and M. Kono, Preliminary results and reliability of palaeointensities studies on historical and 14C dated Hawaiian lavas, J. Geomag. Geoelectr., 43, 375–388, 1991.

    Article  Google Scholar 

  45. Tauxe, L., T. A. T. Mullender, and T. Pick, Pot-bellies, wasp-waists and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 95, 12337–12350, 1996.

    Article  Google Scholar 

  46. Tauxe, L., H. N. Bertram, and C. Seberino, Physical interpretation of Hysteresis loops: micromagnetic modeling of fine particle magnetite, Geochem. Geophys. Geosys., 3, 1–22, 2002.

    Article  Google Scholar 

  47. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Géophysique, 15, 285–376. 1959.

    Google Scholar 

  48. Urrutia-Fucugauchi, J., Paleomagnetic study of the Xitle-Pedregal de San Angel lava flow, southern basin of Mexico, Phys. Earth Planet. Int., 97, 177–196, 1996.

    Article  Google Scholar 

  49. Urrutia-Fucugauchi, J. and A. L. Martin del Pozzo, Implicaciones de los datos paleomagnéticos sobre la edad de la Sierra de Chichinautzin, Cuenca de México, Geof. Int., 32, 523–533, 1993.

    Google Scholar 

  50. Valet, J.-P., Time variations in geomagnetic intensity, Rev. Geophys., 41(1), 1004, doi:101029/2001RG000104, 2003.

    Article  Google Scholar 

  51. Walker, G. P. L., Origin of vesicle types and distribution patterns in the Xitle pahoehoe basalt in Mexico City, Am. Geophys. Un., Min. Soc. Am., Fall Meeting, Baltimore, Programme with Abstracts, p. 566, 1991.

    Google Scholar 

  52. Williams, W. and D. J. Dunlop, Simulation of magnetic Hysteresis in pseudo-single-domain grains of magnetite, J. Geophys. Res., 100, 3859–3871, 1995.

    Article  Google Scholar 

  53. Yamamoto, Y., H. Tsunakawa, and H. Shibuya, Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of causes of erroneously high intensities, Geophys. J. Int., 153, 263–276, 2003.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis M. Alva-Valdivia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alva-Valdivia, L.M. Comprehensive paleomagnetic study of a succession of Holocene olivine-basalt flow: Xitle Volcano (Mexico) revisited. Earth Planet Sp 57, 839–853 (2005). https://doi.org/10.1186/BF03351862

Download citation

Key words

  • Paleomagnetism
  • lava-flows
  • Xitle volcano
  • Mexico