- Letter
- Open access
- Published:
Local gravity from Lunar Prospector tracking data: Results for Mare Serenitatis
Earth, Planets and Space volume 57, pages 1127–1132 (2005)
Abstract
High-resolution gravity anomalies on the surface of the Moon are determined from Lunar Prospector tracking data residuals. By means of a benchmark test the recovery method is validated with respect to the orbit determination and gravity field recovery strategy. Tracking data for the entire extended mission of Lunar Prospector, during which the satellite flew at an average altitude of 30 km above the lunar surface, have been completely and independently processed and orbits have been determined. Using tracking data residuals from these precise orbits, adjustments to the a priori gravity field model have been created for Mare Serenitatis. The results for Mare Serenitatis with the local recovery are comparable to global recovery results, yet faster and more efficient with a possibility to increase the resolution.
References
Barriot, J. P. and G. Balmino, estimation of local planetary gravity fields using line of sight gravity data and an integral operator, Icarus, 99(1), 202–224, 1992.
Barriot, J. P. and G. Balmino, Analysis of the LOS gravity data set from cycle 4 of the Magellan Probe around Venus, Icarus, 112(1), 34–41, 1994.
Barriot, J.-P., G. Balmino, and N. Valès, Building reliable local models of the Venus gravity field from the Cycles 5 and 6 of the Magellan LOS gravity data, Geophysical Research Letters, 24(4), 477–480, 1997.
Carranza, E., A. Konopliv, and M. Ryne, Lunar Prospector Orbit Determination Uncertainties Using The High Resolution Lunar Gravity Field Models, in Advances in the Astronautical Sciences, AAS/AIAA Astrodynamics Specialist Conference, vol. 103, pp. 381–400, Girdwood, Alaska, AAS paper 99–325, 1999.
Floberghagen, R., Lunar Gravimetry, vol. 273 of Astrophysics and Space Science Library, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
Goossens, S., The Near Side—Regional Lunar Gravity Field Determination, Ph.D. dissertation, Delft University of Technology, 2005.
Goossens, S., P.N.A.M. Visser, and B.A.C. Ambrosius, A method to determine regional lunar gravity fields from earth-based satellite tracking data, Planetary and Space Science, 53, 1331–1340, 2005.
Heiskanen, W. A. and H. Moritz, Physical Geodesy, Institute of Physical Geodesy, Graz, Austria, Original edition by W. H. Freeman and Company, San Francisco, 1967, 1984.
Konopliv, A. S., A. B. Binder, L. L. Hood, A. B. Kucinkas, W. L. Sjogren, and J. G. Williams, Improved Gravity Field of the Moon from Lunar Prospector, Science, 281(5382), 1476–1480, 1998.
Konopliv, A. S., S. W. Asmar, E. Carranza, W. L. Sjogren, and D. N. Yuan, Recent gravity models as a result of the Lunar Prospector mission, Icarus, 150, 1–18, 2001.
Lemoine, F. G. R., D. E. Smith, M. T. Zuber, G. A. Neumann, and D. D. Rowlands, A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data, Journal of Geophysical Research, 102(E7), 16,339–16,359, 1997.
Rowlands, D., J. A. Marshall, J. McCarthy, D. Moore, D. Pavlis, S. Rowton, S. Luthcke, and L. Tsaoussi, GEODYN II system description, Vols. 1–5, Contractor report, Hughes STX Corp., Greenbelt, MD, 1995.
Smith, D. E., M. T. Zuber, G. A. Neumann, and F. G. Lemoine, Topography of the Moon from the Clementine lidar, Journal of Geophysical Research, 102(E1), 1591–1611, 1997.
Sugano, T. and K. Heki, High resolution gravity anomaly map from the Lunar Prospector line-of-sight acceleration data, Earth Planets Space, 56, 81–86, 2004.
Thornton, C. L. and J. S. Border, Radiometric Tracking Techniques for Deep-Space Navigation, Monograph 1, Deep-Space Communications And Navigation Series, Jet Propulsion Laboratory, October 2000, JPL Publication 00-11, 2000.
Vonbun, F. O., W. D. Kahn, W. T. Wells, and T. D. Conrad, Determination of 5°×5° gravity anomalies using satellite-to-satellite tracking between ATS-6 and Apollo, Geophys. J. R. astr. Soc., 61, 645–657, 1980.
Watters, T. R. and A. S. Konopliv, The topography and gravity of Mare Serenitatis: implications for subsidence of the mare surface, Planetary and Space Science, 49, 743–748, 2001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Goossens, S., Visser, P.N.A.M., Heki, K. et al. Local gravity from Lunar Prospector tracking data: Results for Mare Serenitatis. Earth Planet Sp 57, 1127–1132 (2005). https://doi.org/10.1186/BF03351893
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03351893