Skip to main content

The contribution of sprites to the global atmospheric electric circuit

Abstract

The global static electric field in the global atmospheric electric circuit resulting from mesospheric sprite discharges is inferred from a coupled model for the global static and dynamic electric fields derived from Maxwell’s equations. It is found that the global atmospheric electric field from individual sprites is 44 mV/m, which can be measured with conventional ULF/ELF radio wave antennas at frequencies 4 Hz.

References

  1. Bering, E. A., A. A. Few, and J. R. Benbrook, The global electric circuit, Physics Today, 51(10), 24–30, 1998.

    Article  Google Scholar 

  2. Bliokh, H., A. P. Nickolaenko, and Yu. F. Filippov, Schumann resonances in the Earth-ionosphere cavity, P. Peregnimus Ltd., Stevenage, 1980.

    Google Scholar 

  3. Boeck, W. L., O. H. Vaughan, R. J. Blakeslee, B. Vonnegut, M. Brook, and J. McKune, Observations of lightning in the stratosphere, Journal of Geophysical Research, 100(D1), 1465–1475, 1995.

    Article  Google Scholar 

  4. Carslaw, K. S., R. G. Harrison, and J. Kirkby, Cosmic rays, clouds and climate, Science, 298, 1732–1737, 2002.

    Article  Google Scholar 

  5. Cummer, S. A. and Füllekrug, M., Unusually intense continuing current in lightning produces delayed mesospheric breakdown, Geophysical Research Letters, 28(3), 495–498, 2001.

    Article  Google Scholar 

  6. Cummer, S. A., U. S. Inan, T. F. Bell, and C. P. Barrington-Leigh, ELF radiation produced by electrical currents in sprites, Geophysical Research Letters, 25(8), 1281–1284, 1998.

    Article  Google Scholar 

  7. Franz, R. C., R. J. Nemzek, and J. R. Winckler, Television image of a large upward electrical discharge above a thunderstorm system, Science, 249, 48–51, 1990.

    Article  Google Scholar 

  8. Füllekrug, M., Dispersion relation for spherical electromagnetic resonances in the atmosphere, Physics Letters A, 275, 80–89, 2000.

    Article  Google Scholar 

  9. Füllekrug, M., The contribution of intense lightning discharges to the global atmospheric electric circuit during April 1998, Journal of Atmospheric and Solar-Terrestrial Physics, 66(13–14), 1115–1119, 2004.

    Article  Google Scholar 

  10. Füllekrug, M., Detection of thirteen resonances of radio waves from particularly intense lightning discharges, Geophysical Research Letters, 32(doi:10.1029/2005GL023028), 1–4, 2005.

    Article  Google Scholar 

  11. Füllekrug, M. and S. Constable, Global triangulation of intense lightning discharges, Geophysical Research Letters, 27(3), 333–336, 2000.

    Article  Google Scholar 

  12. Füllekrug, M., A. C. Fraser-Smith, E. A. Bering, and A. A. Few, On the hourly contribution of global lightning to the atmospheric field in the Antarctic during December 1992, Journal of Atmospheric and Solar-Terrestrial Physics, 61, 745–750, 1999.

    Article  Google Scholar 

  13. Füllekrug, M., D. R. Moudry, G. Dawes, and D. D. Sentman, Mesospheric sprite current triangulation, Journal of Geophysical Research, 106(17), 20189–20194, 2001.

    Article  Google Scholar 

  14. Füllekrug, M., A. C. Fraser-Smith, and K. Schlegel, Global ionospheric D-layer height monitoring, Europhysics Letters, 59(4), 626–632, 2002.

    Article  Google Scholar 

  15. Greifinger, C. and P. Greifinger, Approximate method for determining ELF eigenvalues in the Earth-ionosphere waveguide, Radio Science, 13, 831–837, 1978.

    Article  Google Scholar 

  16. Hays, P. B. and R. G. Roble, A quasi-static model of global atmospheric electricity. 1. The lower atmosphere, Journal of Geophysical Research, 84, 3291–3305, 1979.

    Article  Google Scholar 

  17. Hoffmann, K., Bericht über die in Ebeltofthafen auf Spitzbergen (11°36′15″, 79°9′14″) in den Jahren 1913/14 durchgeführten luftelektrischen Messungen, Beitr. Phys. Atmosph., 11, 1–11, 1923.

    Google Scholar 

  18. Holzer, R. E. and D. E. Deal, Low audio frequency electromagnetic signals of natural origin, Nature, 177, 536–537, 1956.

    Article  Google Scholar 

  19. Kautzleben, H., Kugelfunktionen, Teubner, Leipzig, 1965.

    Google Scholar 

  20. Lyons, W. A., Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, Journal of Geophysical Research, 101(23), 29641–29652, 1996.

    Article  Google Scholar 

  21. Pasko, V. P., U. S. Inan, T. F. Bell, and S. C. Reising, Mechanism of ELF radiation from sprites, Geophysical Research Letters, 25(18), 3493–3496, 1998.

    Article  Google Scholar 

  22. Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood, Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152–154, 2002.

    Article  Google Scholar 

  23. Roble, R. G. and P. B. Hays, A quasi-static model of global atmospheric electricity. 2. Electrical coupling between the upper and lower atmosphere, Journal of Geophysical Research, 84, 7247–7256, 1979.

    Article  Google Scholar 

  24. Rycroft, M. J., S. Israelsson, and C. Price, The global atmospheric electric circuit, solar activity and climate change, Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1563–1576, 2000.

    Article  Google Scholar 

  25. Sato, M. and H. Fukunishi, Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events, Geophysical Research Letters, 30(16), 1859–1862, 2003.

    Article  Google Scholar 

  26. Sentman, D. D., Approximate Schumann resonance parameters for a two scale-height ionosphere, Journal of Atmospheric and Terrestrial Physics, 52(1), 35–46, 1990.

    Article  Google Scholar 

  27. Sentman, D. D., Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity, Journal of Geophysical Research, 101(D5), 9479–9487, 1996.

    Article  Google Scholar 

  28. Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner, Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites, Geophysical Research Letters, 22(10), 1205–1208, 1995.

    Article  Google Scholar 

  29. Su, H. T., R. R. Su, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi, Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974–976, 2003.

    Article  Google Scholar 

  30. Torreson, O. W., W. C. Parkinson, O. H. Gish, and G. R. Wait, Ocean atmospheric-electric results, Page 103 of: Oceanography III: Scientific results of Cruise VII during 1928–1929 under Command of Captain J. P. Ault, Carnegie Institution of Washington, Washington, D. C, 1946.

    Google Scholar 

  31. Uman, M. A., The Earth and its atmosphere as a leaky spherical capacitor, American Journal of Physics, 42, 1033–1035, 1974.

    Article  Google Scholar 

  32. Wait, J. R., Electromagnetic Waves in Stratified Media, Pergamon Press, New York, 1962.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Füllekrug.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Füllekrug, M., Rycroft, M.J. The contribution of sprites to the global atmospheric electric circuit. Earth Planet Sp 58, 1193–1196 (2006). https://doi.org/10.1186/BF03352009

Download citation

Key words

  • Sprites
  • lightning
  • global circuit