Skip to main content

Dynamic rupture propagation on a 2D fault with fractal frictional properties

Abstract

We study dynamic rupture propagation on a 2D fault with a spatially heterogeneous slip-weakening friction law under a homogeneous stress condition. The slip-weakening distance Dc is determined based on fault topography, characterized by the fractal dimension σ and a normalized slip-weakening distance Dc0. Assuming different combination of these parameters, we carry out a large number of dynamic rupture simulations to discuss event size statistics and the scaling relations of macroscopic parameters such as seismic moment, rupture velocity, seismic energy, and radiation efficiency. All stopped events obey an approximately power-law size-number relation. However, statistically self-similar rupture propagation is observed only for selfsimilar fault topography with σ = 1, where the average rupture velocity is controlled by Dc0. This suggests that a power-law size-number relation does not simply mean the self-similarity of rupture process. Both upper and lower fractal limits in fault topography disturb the power-law statistics and the lower fractal limit results in excess of events of the characteristic size. The facts that slow ruptures can radiate large seismic energy and that fast ruptures are not always efficient suggest the importance of local acceleration, deceleration, and arrest of rupture. We also show that the spatial regularity of slip-weakening distance is essential to make the above results.

References

  • Andrews, D. J., Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, 5679–5687, 1976.

    Article  Google Scholar 

  • Aochi, H. and E. Fukuyama, Three-dimensional nonplanar simulation of the 1992 Landers earthquake, J. Geophys. Res., 107, doi:10.1029/ 2000JB000061, 2002.

    Google Scholar 

  • Aochi, H. and S. Ide, Numerical study on multi-scaling earthquake rupture, Geophys. Res. Lett., 31, doi:10.1029/2003GL018708, 2004.

    Google Scholar 

  • Beroza, G. and P. Spudich, Linearized inversion for fault rupture behavior: Application to the 1984 Morgan Hill, California, earthquake, J. Geo-phys. Res., 93, 6275–6296, 1988.

    Article  Google Scholar 

  • Brown, S. R. and C. H. Scholz, Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res., 90, 12,575–12,582, 1985.

    Article  Google Scholar 

  • Cochard, A. and R. Madariaga, Dynamic faulting under Rate-dependent friction, PAGEOPH, 142, 419–445, 1994.

    Article  Google Scholar 

  • Day, S., Three dimensional simulation of spontaneous rupture: the effect of nonuniform prestress, Bull. Seismol. Soc. Am., 72, 1881–1902, 1982.

    Google Scholar 

  • Freund, L. B., Dynamic Fracture Mechanics, Cambridge Univ. Press, New York, 1998.

    Google Scholar 

  • Guatteri, M., P. M. Mai, G. C. Beroza, and J. Boatwright, Strong-ground motion prediction from stochastic-dynamic source models, Bull. Seis-mol. Soc. Am., 93, 301–313, 2003.

    Article  Google Scholar 

  • Ide, S., Estimation of Radiated energy of finite-source earthquake models, Bull. Seismol. Soc. Am., 92, 2294–3005, 2002.

    Article  Google Scholar 

  • Ide, S., On fracture surface energy of natural earthquakes from viewpoint of seismic observations, Bull. Earthquake Res. Inst., 78, 1–120, 2003.

    Google Scholar 

  • Ide, S. and H. Aochi, Earthquakes as multiscale dynamic rupture with heterogeneous fracture surface energy, J. Geophys. Res., 110, doi:10. 1029/2004JB003591, 2005.

  • Ide, S. and G. C. Beroza, Does apparent stress vary with earthquake size?, Geophys. Res. Lett., 28, 3349–3352, 2001.

    Article  Google Scholar 

  • Kanamori, H. and D. L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 65, 1073–1095, 1975.

    Google Scholar 

  • Kostrov, B. V., Seismic moment and energy of earthquakes and seismic flow of rock, Izv. Earth Phys., 1, 23–40, 1974.

    Google Scholar 

  • Matsu’ura, M., H. Kataoka, and B. Shibazaki, Slip-dependent friction law and nucleation processes in earthquake rupture, Tectonophysics, 211, 135–148, 1992.

    Article  Google Scholar 

  • Ohnaka, M., A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108, doi:10.1029/2000JB000123, 2003.

    Google Scholar 

  • Okubo, P. G. and K. Aki, Fractal geometry in the San Andreas fault system, J. Geophys. Res., 92, 345–355, 1987.

    Article  Google Scholar 

  • Olsen, K. B., R. Madariaga, and R. J. Archuleta, Three-dimensional dynamic simulation of the 1992 Landers earthquake, Science, 278, 834–837, 1997.

    Article  Google Scholar 

  • Power, W. L., T. E. Tullis, S. R. Brown, G. N. Boitnott, and C. H. Scholz, Roughness of natural fault surfaces, Geophys. Res. Lett., 14, 29–32, 1987.

    Article  Google Scholar 

  • Renard, F., C. Voisin, D. Marsan, and J. Schmittbuhl, High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales, Geophys. Res. Lett., 33, doi:10.1029/2005GL025038, 2006.

    Google Scholar 

  • Ripperger, J., P. M. Mai, and J. P. Ampuero, Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress, J. Geophys. Res., 112, doi:10.1029/2006JB004515, 2007.

    Google Scholar 

  • Sagy, A., E. E. Brodsky, and G. J. Axen, Evolution of fault-surface roughness with slip, Geology, 35, 283–286, 2007.

    Article  Google Scholar 

  • Stirling, M. W., S. G. Wesnousky, and K. Shimazaki, Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global study, Geophys. J. Int., 124, 833–868, 1996.

    Article  Google Scholar 

  • Tada, T., Boundary integral equations for the time-domain and time-independent analyses of 2D non-planar cracks, PhD Thesis, University of Tokyo, 1996.

    Google Scholar 

  • Uenishi, K. and J. R. Rice, Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, J. Geophys. Res., 108, doi:10.1029/2001JB001681, 2003.

    Google Scholar 

  • Walter, W. R., K. Mayeda, R. Gok, and A. Hofstetter, The scaling of seismic energy with moment; Simple models compared with observations, in Earthquakes: Radiated energy and the physics of faulting, AGU geophysical monograph 170, edited by R. Abercrombie, A. McGarr, H. Kanamori, G. DiToro, 25–41, 2006.

    Chapter  Google Scholar 

  • Yamada, T., J. J. Mori, S. Ide, R. E. Abercrombie, H. Kawakata, M. Nakatani, Y. Iio, and H. Ogasawara, Stress drops and radiated seismic energies of microearthquakes in a South African gold mine, J. Geophys. Res., 112, doi:10.1029/2006JB004553, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ide.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Ide, S. Dynamic rupture propagation on a 2D fault with fractal frictional properties. Earth Planet Sp 59, 1099–1109 (2007). https://doi.org/10.1186/BF03352053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352053

Key words