Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Confidence limit of the magnetotelluric phase sensitive skew

Abstract

The rotationally invariant phase sensitive skew parameter, an indicator of dimensionality of conductivity structure, is a complicated non-linear function of the impedance tensor elements. In the presence of noise in the impedance data, skew can be significantly biased, leading to a false interpretation of dimensionality. Therefore, the probability function distribution of the skew parameter is derived to obtain its confidence limit, rather than treating a conventional linear propagation error. It is well known that the latter is only appropriate if the parameter is a function of independent random variables with small relative errors. The confidence limit is estimated by deriving its conditional probability function in terms of the tensor elements density function, using the Jacobi-matrix transformation of random variables, assuming the tensor elements to be normally distributed random variables. It is shown with synthetic and experimental data that the statistical confidence limit derived here truly reflects a probability range for the skew value. Bias of skew is seen to be significant with a small 5% of random Gaussian noise added to the tensor elements. Considering the 95% confidence limit instead of the measured skew itself results in a plausible approach to analyse dimensionality. The procedure developed here to estimate the confidence limit can also be extended to other functions of the tensor elements.

References

  1. Bahr, K., Geological noise in magnetotelluric data: a classification of distortion types, Phys. Earth Planet. Int., 66, 24–38, 1991.

    Article  Google Scholar 

  2. Brandt, S., Datenanalyse, 651 pp., Wissenschaftsverlag, Mannheim, 1992.

    Google Scholar 

  3. Dudewicz, E. J. and S. N. Mishira, Modern Mathematical Statistics, 838 pp., John Wiley & Sons, New York, 1988.

    Google Scholar 

  4. Egbert, G. D. and J. R. Booker, Robust estimation of geomagnetic transfer function, Geophys. J. R. astr. Soc., 87, 173–194, 1986.

    Article  Google Scholar 

  5. Fisz, M., Wahrscheinlichkeitsrechnung und Mathematische Statistik, Deutscher Verlag der Wissenschaften, Berlin, 1976.

    Google Scholar 

  6. Mackie, R. and J. Booker, Documentation for mtd3fwd and d3-to-mt, User Documentation, GSY-USA, Inc., 2261 Market St., Suite 643, San Francisco, CA 94114, 1999.

    Google Scholar 

  7. Mackie, R. L., J. T. Smith, and T. Madden, Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example, Radio Sci., 29, 923–936, 1994.

    Article  Google Scholar 

  8. SFB 267, Deformation Processes in the Andes, Interaction between endogenic and exogenic processes during subduction orogenesis, Freie Universität Berlin, Technische Universität Berlin, GeoForschungsZentrum Potsdam, Universität Potsdam, Report for the research period 1999–2001, pp. 239–268, Berlin/Potsdam, March, 2001.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pamela Lezaeta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lezaeta, P. Confidence limit of the magnetotelluric phase sensitive skew. Earth Planet Sp 54, 451–457 (2002). https://doi.org/10.1186/BF03353036

Download citation

Keywords

  • Confidence Limit
  • Synthetic Data
  • Error Covariance Matrix
  • Tensor Element
  • Impedance Tensor