Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Article | Open | Published:

Procrustean solution of the 9-parameter transformation problem


The Procrustean “matching bed” is employed here to provide direct solution to the 9-parameter transformation problem inherent in geodesy, navigation, computer vision and medicine. By computing the centre of mass coordinates of two given systems; scale, translation and rotation parameters are optimised using the Frobenius norm. To demonstrate the Procrustean approach, three simulated and one real geodetic network are tested. In the first case, a minimum three point network is simulated. The second and third cases consider the over-determined eight- and 1 million-point networks, respectively. The 1 million point simulated network mimics the case of an air-borne laser scanner, which does not require an isotropic scale since scale varies in the X, Y, Z directions. A real network is then finally considered by computing both the 7 and 9 transformation parameters, which transform the Australian Geodetic Datum (AGD 84) to Geocentric Datum Australia (GDA 94). The results indicate the effectiveness of the Procrustean method in solving the 9-parameter transformation problem; with case 1 giving the square root of the trace of the error matrix and the mean square root of the trace of the error matrix as 0.039 m and 0.013 m, respectively. Case 2 gives 1.13×10−12 m and 2.31×10−13 m, while case 3 gives 2.00×10−4 m and 1.20 × 10−5 m, which is acceptable from a laser scanning point of view since the acceptable error limit is below 1 m. For the real network, the values 6.789 m and 0.432 m were obtained for the 9-parameter transformation problem and 6.867 m and 0.438 m for the 7-parameter transformation problem, a marginal improvement by 1.14%.


  1. Antonopoulos, A., Scale effects associated to the transformation of a rotational to a triaxial ellipsoid and their connection to relativity, J. Planet. Geod., 38(4), 119–131, 2003.

  2. Ashburner, J. and K. Friston, Multimodal Image Coregistration and Partitioning-A Unified Framework, NeuroImage, 6(3), 209–217, 1997.

  3. Awange, J. L. and E. W. Grafarend, Solving algebraic computational problems in Geodesy and Geoinformatics, Springer-Verlag, Heidelberg, 2005.

  4. Beinat, A. and F. Crosilla, Generalized Procrustes analysis for size and shape 3D object reconstructions, Optical 3-D Measurement Techniques V, Vienna, October 1–4, 345–353, 2001.

  5. Beinat, A. and F. Crosilla, A Generalized Factored Stochastic Model for Optimal Registration of LIDAR Range Images, Int. Arch. Photogramm. Remote Sensing Spat. Inf. Sci., 34(PART 3/B), 36–39, 2002.

  6. Borg, I. and P. Groenen, Modern Multidimensional Scaling, Springer-Verlag, New York, 1997.

  7. Bursa, M., The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the Earth, and the planes of the initial astronomic and geodetic meridians from the observation of artificial Earth satellites, Stud. Geophys. Geod., 6, 209–214, 1962.

  8. Conmmandeur, J. F., Matching configurations, DSWO Press Leiden University, 1991.

  9. Cox, T. F. and M. A. A. Cox, Multidimensional Scaling, Chapman and Hall, 1994.

  10. Eckart, C. and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1(3), 211–218, 1936.

  11. Featherstone, W. and P. Vaníček, The role of coordinate systems, coordinates and heights in horizontal datum transformations, Aust. Surv., 44, 143–150, 1999.

  12. Fitzpatrick, J. M. and J. B. West, The distribution of target registration error in rigid-body point-based registration, IEEE Trans. Med. Imaging, 20(9), 917–927, 2001.

  13. Forsberg, R., Experience with the ULISS-30 inertial survey system for local geodetic and cadastral network control, J. Geod., 65(3), 179–188, 1991.

  14. Fröhlich, H. and G. Broker, Trafox version 2.1—3d-Kartesische Helmert-Transformation,, 2003.

  15. Grafarend, E. W. and J. L. Awange, Determination of the vertical deflection by GPS/LPS measurements, Zeitschrift für Vermessungswesen, 125, 279–288, 2000.

  16. Grafarend, E. W. and J. L. Awange, Nonlinear analysis of the three-dimensional transformation [conformal group C7(3)], J. Geod., 77, 66–76, 2003.

  17. Grafarend, E. W. and B. Schaffrin, Ausgleichungsrechnung in linearen Modellen, Wissenschaftsverlag, Mannheim, 1993.

  18. Gruen, A. and D. Akca, Least squares 3D surface and curve matching, ISPRS J. Photogramm. Remote Sensing, 59(3), 151–174, 2005.

  19. Kinneen, R. W and W. E. Featherstone, Empirical evaluation of published transformation parameters from the Australian Geodetic Datums (AGD66 and AGD84) to the Geocentric Datum of Australia (GDA94), J. Spat. Sci., 49(2), 1–31, 2004.

  20. Lingoes, J. C. and I. Borg, A direct approach to individual differences scaling using increasingly complex transformations, Psychometrika, 43(4), 491–519, 1978.

  21. Mathes, A., EasyTrans Pro-Edition, Professionelle Koordinatentransformation für Navigation, Vermessung und GIS, ISBN 978-3-87907-367-2, CD-ROM with manual, 2002.

  22. Niederoest, J., A bird’s eye view on Switzerland in the 18th century: 3D recording and analysis of a historical relief model. The International Archives of Photogrammetry, Remote Sensing Spat. Inf. Sci., 34-5(C15), 589–594, 2003.

  23. Papp, E. and L. Szucs, Transformation Methods of the Traditional and Satellite Based Networks, Geomatikai Kozlemenyek, VIII, 85–92, 2005 (in Hungarian with English abstract).

  24. Pfefferbaum, A., M. J. Rosenbloom, T. Rohlfing, E. Adalsteinsson, C. A. Kemper, S. Deresinski, and E. V Sullivan, Contribution of alcoholism to brain dysmorphology in HIV infection: Effects on the ventricles and corpus callosum, Neuroimage, 33, 239–251, 2006.

  25. Piperakis, E. and I. Kumazawa, Affine transformation of 3D objects represented with Neural Network, Proceedings of 3-D Digital Imaging and Modeling (3DIM 01’), 213–223, 2001.

  26. Soler, T., A compendium of transformation formulas useful in GPS work, J. Geod., 72, 482–490, 1998.

  27. Späth, H., A numerical method for determining the spatial Helmert transformation in case of different scale factors, Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 129, 255–257, 2004.

  28. Sun, F. T., R. A. Schriber, J. M. Greenia, J. He, A. Gitcho, and J. W. Jagust, Automated template-based PET region of interest analyses in the aging brain, Neuroimage, 34(2), 608–617, 2007.

  29. Umeyama, S., Least squares estimation of transformation parameters between two patterns, IEEE Trans. Pattern Anal. Mach Intell., 13(4), 376–380, 1991.

  30. Watson, G. A., Computing Helmert transformations, J. Comp. Appl. Math., 197, 387–394, 2006.

  31. Wolf, H., Geometric connection and re-orientation of three-dimensional triangulation nets, Bull. Géodésique, 68, 165–169, 1963.

Download references

Author information

Correspondence to J. L. Awange.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Procrustes
  • 9-parameter transformation
  • least squares solution
  • Frobenius
  • singular value decomposition (SVD)